In July 2023, astronomers discovered the most distant active supermassive black hole to date. This gravitational phenomenon is located in galaxy CEERS 1019, which is seen as it was when the universe was just 570 million years old. This is only 100 million years after the Big Bang, making it the earliest active supermassive black hole ever observed.
The Most Distant One – CEERS 1019
The black hole is also one of the least massive seen in the early universe, measuring the equivalent of about 9 million suns. This is much smaller than the supermassive black holes that are typically found in the centers of galaxies, which can weigh billions or even trillions of suns.
The discovery of this early black hole is baffling astronomers since it has been concluded that supermassive black holes form from the gravitational collapse of massive stars, but in this case, is not clear how a star could have formed so early in the universe and grown to be so massive in such a short time.
This raises questions about the evolution of galaxies. It is thought that supermassive black holes play a role in the formation and evolution of galaxies, but it is not clear how. The discovery of this black hole suggests that supermassive black holes may have been more common in the early universe than previously thought and that they may have played a more important role in the evolution of galaxies than we had realized.
Hopefully, it is a case where we have to back to the drawing board, but this black hole is definitely something where additional thought needs to be done where there may be other entities at work here that we just don’t know about – yet!
The Big One
Although the James Webb telescope is bringing never-before-seen wonders to our eyes, the famous Hubble is not without merit.
300 million light-years away at the heart of the Coma Cluster lies one of the largest black holes ever discovered. The Coma Cluster is a large collection of over 1,000 galaxies, which is quite amazing in its own right.
NGC 4889 shines as the largest and brightest galaxy and its supermassive black hole is breaking all kinds of records. In comparison, the mass of the black hole at the center of our Milky Way galaxy is about four million times that of our Sun. The mass of the black hole at the center of NGC 4889 is around twenty-one billion times the mass of our Sun.
Early in its life, astronomers would classify the black hole as a quasar. A quasar is a massive and remote celestial object, releasing large amounts of energy. It is believed that quasars themselves contain massive black holes and are just a stage in the evolution of some galaxies.
At this time as a quasar, NGC 4889’s black hole was devouring all the stars, gas, and galactic dust in its path. This massive meal only fueled the black hole into forming an accretion disc that orbits the black hole and accelerates the black hole’s gravitational pull. The galactic dinner is heated up to millions of degrees and expelled around the black hole up to a thousand times the energy output of our own Milky Way.
Once the supermassive black hole’s appetite was filled and the lavish meal finished, the black hole fell into a deep and dormant state that it is currently in. The environment of the surrounding galaxy is so peaceful that stars are forming from the remaining gas that’s calmly orbiting the black hole.
Quasars and black holes continue to remain mysterious objects to astronomers and scientists. Luckily with new images thanks to various telescopes around the world astronomers can further their knowledge of these objects. Even though it is impossible to directly see a black hole since light can’t escape its gravitational pull, the mass of a black hole can still be determined. Astronomers in Hawaii at the W. M. Observatory and the Gemini North Telescope measured the velocity of stars moving around the center of NG 4889. These instruments determined the massive supermassive black hole.
NASA was already working on a new venture for a more efficient spacecraft that they could reuse instead of relying on the disposable rockets that cost them billions of dollars to build each time.
This idea of a reusable rocket that could launch astronauts into space, but dock and land like an airplane were well-accepted for future space travel.
Enter the Space Shuttle Program
In 1972, President Nixon announced that NASA would develop a reusable space transportation system (STS). They decided that the shuttle would consist of an orbiter attached to solid rocket boosters and an external fuel tank. This design was considered safer and more cost-effective.
One of the first obstacles was to design a spacecraft that didn’t use ablative heat shields, which subsequently burned up each time the shuttle re-entered the Earth’s atmosphere.
For the shuttle to be reusable, a different strategy would have to be initiated. The designers came up with an idea to overlay the craft with insulating ceramic tiles that would absorb the heat of reentry, without causing any danger to the astronauts.
The First Flights
The first of four test flights began in 1981, leading to operational flights starting in 1982. They were used on a total of 135 missions from 1981 to 2011. The launchpad used was the Kennedy Space Center in Florida.
Like the previous Saturn V rocket, the Space Shuttle had different components of its own, which included the Orbiter Vehicle (OV), a pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET), containing liquid hydrogen and liquid oxygen as fuel.
The Shuttle was launched vertically, the same as any rocket in its category would launch, using the two SRBs to jettison it. The SRBs operated in a parallel fashion by utilizing the fuel from the ET.
Once the mission had been completed, the shuttle would land similar to a jet aircraft on the runway of the Shuttle Landing Facility of KSC or Rogers Dry Lake in Edwards Air Force Base, California. After landing at the base, the orbiter was then flown back to the KSC on the Shuttle Carrier Aircraft, which was a specially modified Boeing 747.
Tragedy Hits
Although the accomplishments that the shuttle program has achieved are beyond expectations, there were two unfortunate events during its time.
Challenger January 28, 1986
Shortly after liftoff, the Space Shuttle Challenger exploded f the U.S. space shuttle orbiter Challenger, claiming the lives of seven astronauts.
Among those who were lost were teacher-in-space Christa McAuliffe, commander Francis (Dick) Scobee, pilot Michael Smith, mission specialists Ellison Onizuka, Judith Resnik, and Ronald McNair, and Hughes Aircraft engineer Gregory Jarvis.
Columbia Feb 1, 2003
It was the final mission of Columbia. Seven crew members lost their lives when the shuttle burned up over the state of Texas during its reentry on Feb 1, 2003.
No, we’re not talking about the TV show. We are talking about the real thing. A phenomenon that has baffled scientists and astronomers for millenniums.
Bang Zoom!
It’s the Big Bang that has originated as a pinpoint (yes that small!) of intensely hot, immensely dense energy that appeared out of apparently nowhere.
It’s the Little Things
If we may steal an excerpt from the bible – “In the beginning, God created the heavens and the Earth”. Now allow us to extrapolate this scientifically to mean that there existed an incomprehensively immeasurable point that at some point in time (we say time here as a reference, but it didn’t exist yet), this immensely tiny entity planted the seed of what we call the universe.
And the Single Things
The origin of the Big Bang is where this tiny region, called a singularity, is where the density of matter, or more technically described as the curvature of spacetime, becomes infinite.
Confused? You’re not alone, so let’s try defining it another way. A singularity represents the phenomenon that the pull of gravity becomes so strong that nothing, not even light, can escape it.
Still confused? How about this explanation? A singularity is where all matter and energy are concentrated into one single point thanks to the force of gravity.
We have seen this occurrence with the existence of black holes.
Be Cool
As this hot area began to cool down, the first photons, namely, quarks and leptons condensed out of the fizzing vacuum, like a mist on a cold window to form a quark-gluon plasma sea. (For an illustration of how small these entities are, visit The Scale of the Universe and keep cruising down through the world of the micro-universe, until you reach quarks, 10-18 meters in size).
Time Has Arrived But Atom is Nowhere to Be Found
After one-millionth of a second, the quarks combined into hadrons, primarily protons, and neutrons, while vast amounts of matter and antimatter wiped each other out, leaving only a billionth of the original material, along with vast quantities of gamma rays. About a second after the birth of the universe, its temperature dropped enough to crystallize whizzing neutrinos from the photons.
Nucleosynthesis started to materialize, with protons and neutrons joining to form the nuclei of helium, deuterium, and lithium.
Minutes later, matter consisted simply of three parts hydrogen to one part helium. The universe was expanding incredibly fast, and after a few hours, there was no longer the density of neutrons to allow any heavier nuclei to form.
Fast Forward a Few Thousand Years
When the universe was an estimated 377,000 years old, it finally became cool enough for electrons to settle into orbits around atomic nuclei.
For the next 100 million years everything remained dark as the vast ionized clouds of hydrogen and helium expanded. Eventually, however, the photons were set free from the plasma, and the infant universe was unveiled in all its glory.
Any Body Home?
The first bodies to emerge from the chaos of the early universe were quasars. The most powerful and luminous objects in the universe, early active galaxies, built around young supermassive black holes, forming slight inconsistencies in the otherwise uniform expansion of the universe.
Soon after, inside and outside of these protogalaxies, Nebulas which are large clouds of the ingredients of hydrogen and helium create stars and planets that start to explode into life. After they exploded, they seeded newly minted elements into the mix.
And the Cycle of Life Begins
For the next 500,000 years, until the universe’s first billionth birthday, quasars and early stars hatched, lived, died, and were recycling earlier generations and pouring out intense radiation that re-ionized their surroundings. Ninety-nine percent of all matter in the universe remains in the form of fizzy ionized plasma from this time.
Electric generators are the opposite of electric motors, but they work on the same concept. Whereby an electric motor uses an electric current to create a magnetic field, a generator uses a magnetic field to induce an electric current. If you read our article on electric motors, then this should sound very familiar. The process is only reversed.
The current that is produced flows through a conductor which is usually a wire, but it can also be a metal plate. The output of the current is then used to power anything from a small device (e.g. a lamp or computer) to an entire town or city.
What They are Used For
Generators are used to create electricity which then powers homes and businesses. They can be powered by either an electromagnet or a permanent magnet. The type of generator you use will determine how much electricity you can generate.
They are often used to provide backup power in case of a power outage, and they are also used in many portable applications such as camping and RVing. Just about all emergency facilities have backup power, such as hospitals.
In some cases, generators can also be used to supplement the main power source, providing additional power during high-demand periods.
The most common power sources are fuels such as coal, natural gas, or oil.
How Does an Electric Generator Create Energy?
When the generator is turned on, its moving parts create a magnetic field, producing an electric current. (Remember with electric motors, an electric current is produced that provides a magnetic field. This is the opposite of what generators do.) The current flows through wires to an external circuit, where it can be used to power electric devices. In this way, an electric generator converts mechanical energy into electrical energy.
What are the different types of electric generators available on the market today?
The most common type uses a combustion engine to generate electricity. These engines can be powered by gasoline, diesel, natural gas, or propane.
Another type is the steam turbine, which uses steam to power a turbine that generates electricity. Steam turbines can be powered by coal, nuclear reactors, or solar thermal power plants.
The third type of generator is the hydroelectric generator, which uses water to power a turbine that generates electricity. Hydroelectric generators can be powered by waterfalls, dams, or river currents. The Niagara Project is a perfect example of the delivery of electricity via hydroelectric generators.
The fourth type of generator is the wind turbine, which uses wind to power a turbine that generates electricity, but there must be enough wind for the proper amount of electricity to be produced.
Wind turbines can be used in both onshore and offshore locations.
How Can You Choose the Right Electric Generator for Your Needs and Budget?
With so many different brands, models, and features to choose from, it’s hard to know where to start. However, by considering a few factors, you can narrow down your options and find the perfect generator for your needs and budget.
First, decide what type of generator you need. For example, if you only need power for occasional use, such as during a power outage, a portable generator may be sufficient.
However, if you need a constant supply of electricity, such as for a construction site or an RV, a stationary generator would be a better choice.
Next, consider how much power you will need. For most applications, a small generator that produces around 2,000 watts will suffice.
However, if you need to run large appliances or multiple devices at once, you’ll need a more powerful model. Finally, compare prices to find the best value for your money. Be sure to factor in the cost of fuel and maintenance when making your decision. By considering these factors, you can find the perfect electric generator for your needs and budget.
Important Safety Tips
First, always read the manufacturer’s instructions carefully before operating the generator. This will help you to understand how the generator works and what safety measures need to be taken.
Next, make sure that the generator is properly grounded before use. This will help to prevent electrical shock. Finally, never operate the generator near flammable materials or in enclosed spaces, as this can create a fire hazard.
By following these simple safety tips, you can help to ensure that your experience with an electric generator is safe and enjoyable.
When an electric current runs through a wire, a magnetic field is produced and when there is a magnetic field, metallic elements become attracted to it. This is the concept behind the workings of an electric motor.
If we can maintain these elements to move towards the magnetic field and away from it at an ongoing, continuous rate, we can have a device that is constantly spinning.
If we attach something to the part of the device that is constantly spinning, such as a glass plate in the microwave, we have harnessed the power of converting electrical energy into mechanical energy, or more specifically, we have created an electric motor.
What Devices Use Electric Motors?
When you use an electric razor, toothbrush, fan, or vacuum cleaner, you are using an electric motor. Let’s through the inner workings of your car also. That’s probably no surprise, but how about this: washing machines, refrigerators, microwaves, your computer, and even your smartphone!
Confused? Don’t be. Something is needed to operate the refrigerator’s compressor. If there is a mechanical hard drive in your computer, then there is a small motor that turns the disk. And microwaves? Well, something must be spinning that glass plate around, right?
And your electric cars (if you have one). They have motors, which are used to spin the tires as you drive, among other things.
The bottom line is you probably go about your day using some device that uses an electric motor. So now that we know how our lifestyles are affected by these devices, let’s delve into how these motors work.
The Working of an Electric Motor
First, let us focus on the magnetic field that causes the components within the motor to constantly spin.
How is the magnetic field created? Our article on magnetic fields explains this, but in a nutshell, if we connect a wire to a battery, the electrons of each of the atoms will move toward the positive pole of the battery. If we wrap the wire around a metal rod, the magnetic field intensifies.
The Initial Stage
The motor is designed so that the magnetic poles of a rod, called a rotor are always facing the same polarity of a stationary magnet, called a stator, causing the rotor to spin around.
For example, when electricity is turned on, the polarity of one side of the rotor, let’s say the north side is initially facing the north side of the stator, so there will be that repelling effect, causing the rotor to spin in the other direction.
The Next Stage
Well, that initial stage works just as it should because like poles repel each other, but that’s it. Then it stops, so for the rotor to keep spinning, there has to be a mechanism that will cause the poles to reverse continuously.
That is the job of the commutator. This entity keeps reversing the path of the electrons so that the poles are always repelling one another and consequently, keeps the rotor spinning.
Key Parts of an Electric Motor
Let’s review the parts of the motor:
Stator – The stationary part of the motor that creates the magnetic field that causes the rotor to spin. The stator is found in between two pieces of copper that conduct electricity.
Rotor – The rotating part of the motor is placed within the magnetic field.
Shaft – The motor shaft connects the rotor to the stator and is used to power the equipment or machinery.
Commutator – The device that reverses the polarity of the rotor. Like reversing a battery at every spin so that the electrons change course.
Fan – The fan is used to create airflow and increase the efficiency of a motor.
Final Words
Electric motors are all around us. They are a safe, efficient, and reliable way to power machinery and equipment. They are available in a range of sizes, voltages, and designs and can be powered by a wide range of energy sources, including fossil fuels and renewable energy sources like solar or wind.
Let’s use iron for example. Touch it with another piece of iron and what happens? Nothing! Now take a bare wire, copper preferred. Wrap the copper wire around one of the pieces of iron and what happens? Still nothing!
Now grab both ends of the copper wire and connect it to a battery. What happens? Still nothing – at least nothing noticeable that the naked eye can see!
What is happening when the wires connect to the battery (called a circuit) is that the electrons were random before the circuit was completed and they straightened out, like a row of marching soldiers after the circuit is complete.
These marching electrons will point and move towards the pole ( polarity) of the battery it is connected to. Now let’s get a little more technically correct and call these marching electrons an electric current, and as these electrons (current) are moving through the wire, a magnetic field is produced.
When There is Electric Current, There is a Magnetic Field
But Just What is This Magnetic Field?
If we pick up the other piece of iron (which does not have the copper wire around it) and place it near the iron piece that has the wire wrapped (and thus the electric current), that isolated piece of iron suddenly moves toward the electrified one.
The reason why the iron pieces attract each other is that the iron piece with the copper wire wrapped around it (called a coil) becomes magnetic. And so, we have just created an electromagnet!
For the video below, you might want to put your thinking caps on as it explains pretty well how electromagnetic forces are derived (hint: when electrons move through a wire). We suggest those that who are in school and/or have an absorption for learning continue to this video.
For those that would like to bypass such items as Maxwell’s equations and just want a cheat sheet of what is the criteria for an electromagnetic field, see our summary below.
How Electromagnets are Made
An electromagnet can be made out of any type of metal, but iron and nickel are the ones most often used. Nickel magnets are stronger than iron magnets, but iron is cheaper.
Iron is found in most scrap yards, or you can buy it from a hardware store. The first step in making an electromagnet is to create a wire that is wrapped with a coil of metal several times. This is known as an electromagnet coil. The coil has to be wrapped around a core, which is made out of a non-magnetic material.
The Magnetic Field
The electromagnetic field is the region of energy surrounding a magnet. The magnetic field is perpendicular to the path where the electrons flow.
Why are Electromagnets Important?
Electromagnets are important because they can be used to power items and devices that are used by us every day. Motors and generators are just two examples. They are also used in toys, as a way of moving things around in a car or even to move things in a factory.
They are also useful because they’re easily controllable. If you want to turn the electromagnet off, you simply turn off the electric current running through it. If you want to turn it back on, you can simply turn it back on again.
Types of Magnets
There are two types: temporary and permanent. Temporary magnets are only magnetic while electricity is running through them. Permanent magnets remain magnetic no matter what happens. This is because these magnets are not electrified. An example is the ones stuck to your fridge or another metal surface.
Conclusion
Magnetism is created when electrons are in movement. In a practical sense, this means that if you connect a wire to a battery (power source), electrons will move from the negative pole to the positive pole of the battery.
When this happens, a force is created in addition to the electrical force, which is the magnetic force. This magnetic force ‘pushes’ perpendicular to electrical force (current), so any metal that has magnetic properties will be attracted to this force and move towards it accordingly.
The magnetic force can be strengthened by any of the following criteria.
Take the straight wire and curl it around the medium, usually an iron bar. The result is called a coil.
Wiring the coil more will cause the magnetic field to strengthen.
Increasing the current; that is, increasing the speed at which the electrons travel through the coiled wire will also strengthen the magnetic field.
The practical applications of electromagnets are the ability to cause an entity to move because of this force, such as what happens inside a motor.
If you watched Star Trek, in one episode, the Nomad, the robot that referred to humans as carbon-based lifeforms, and for good reason. Because that’s what we are!
Virtually every organic compound on Earth contains carbon. Life as we know it would not exist without carbon. That’s because it has a unique ability to bond with itself and other elements fairly easily, due to its need to find more electrons to bond with.
Carbon is the sixth element in the periodic table with the chemical symbol C and an atomic number of six. It has two electrons in its inner shell and four electrons in its outer shell (valence shell) as shown in the Bohr illustration above.
Because the carbon atom has a natural desire to fulfill its outer shell with eight electrons or saying it another way, it needs to fill up its outer energy level, it will constantly look to bond with other atoms to obtain four more electrons. Once bonded, the atom’s outer shell is fully stable. Carbon atoms can form bonds with other carbon atoms, but they can also form bonds with almost all other elements.
Carbon can exist in multiple different forms known as allotropes: graphite, diamond, and others. It’s also a non-metal, but one of the most important elements on earth. Carbon atoms have many uses, from making steel to fueling cars.
This article explores almost everything you wanted to know about carbon atoms and their various forms.
Types (Allotropes) of Carbon Molecules
Graphite
Graphite is an allotrope of carbon. It’s a black and soft mineral that is commonly found in nature in the form of pencils. Although graphite is often treated as a mineral, it’s more commonly considered a form of carbon. Graphite is very soft and can be easily compressed into a very thin sheet.
Graphite is made of layered sheets of carbon atoms that form stacks known as graphene. Each layer is made of carbon atoms arranged in a hexagonal pattern with strong covalent bonds. These layers are held together by weak intermolecular forces that are easily broken by heat. That’s why pencils can be erased by rubbing graphite and paper together!
The Diamond
The diamond is another allotrope of carbon. The only difference between the two is that diamonds are made of carbon atoms arranged in a cubic pattern. This makes diamonds a hard and rigid substance.
Diamonds are also made of graphene sheets that are held together by strong covalent bonds. These properties make this mineral extremely valuable, but they’re also highly limited in supply. That’s why they’re one of the most expensive materials on earth.
It’s estimated that only 0.1% of the carbon that enters the earth’s surface is converted into a diamond. This is large because diamonds are formed at very high pressures beneath the earth.
The covalent bonds that can form carbon can result in many different types of molecules. Carbon can form thousands of bonds with other elements. This is why carbon has so many uses in the world.
Fullerenes
Fullerenes are carbon molecules that are composed of many rings of carbon. They were accidentally discovered in 1985 by two scientists who were studying carbon soot. The discovery was so exciting that the scientists won a Nobel Prize for their discovery!
C 60 – the most common carbon molecule – has 60 carbon atoms arranged in a spherical pattern. This sphere can be thought of as a football because the name “fullerene” comes from two English words: football and carbon.
C 60 is known as a buckyball and can be used as a tool for scientists. Yes, that’s what it’s called. Buckyballs are carbon atoms that are bonded to three other carbon atoms. Scientists can use buckyballs to study the structure of other molecules.
Why is There So Much Carbon in the World?
Carbon is the fourth most abundant element in the universe. Carbon is created in the interiors of stars and then released into the universe when those stars expire. It is present in the earth’s crust in the form of minerals and organic compounds. C 60, the largest buckyball, is only possible at a pressure of 100 gigapascals– the type of pressure that’s found inside giant planets. (A pascal is a unit of pressure. Gigapasclal is that unit of pressure x 1 billion).
Diatomic Carbon
Diatomic carbon is the simplest form of carbon. It contains two carbon atoms with one double bond between the atoms. A double bond is where an atom shares its valence electrons with two other atoms, in contrast to a covalent bond created by lighting and oxygen in the air, but it is usually destroyed by other compounds in the atmosphere.
This is important because diatomic carbon is a greenhouse gas. Carbon atoms are released into the atmosphere when plants are burned. These atoms are then oxidized by the other compounds in the air to create more diatomic carbon. Diatomic carbon is one of the most important greenhouse gases in the atmosphere. This is precisely why it was released in the first place!
Conclusion
Carbon is the element that forms the molecules for all known forms of life on earth. It’s the only element that can form molecules with a ratio of electrons to protons that’s necessary for biology.
Carbon is not a metal. Metals are largely defined by their electrical conductivity. Carbon is a non-metal and does not conduct an electrical current.
Carbon is also very common in the universe and can form multiple different types of bonds with other elements, so when Noman called humans carbon-based life forms, because of its abundance in the universe, maybe he met other carbon life forms in the galaxy we just don’t know about yet!
Elon Musk has always been known for his eccentric ideas and they are often so far-reaching and innovative that people don’t believe he’ll follow through on them—at least not in the way he does.
When Elon Musk announced Starlink, it was just more of the same. It sounded like another quirky idea, but this time with a twist. Some people even dismissed it as a PR stunt, and others thought there was no way it could succeed given the current limitations of space technology.
Now that we know more about Starlink and its development, it seems they were all wrong…again. In this article, we’ll discuss everything you need to know about Elon Musk’s Starlink project, how it became a reality, and what it means for space exploration moving forward.
What is Starlink?
Starlink refers to the development of thousands of satellites that are being put into low-Earth orbit as a way to provide internet and communications services across the globe.
This system will be made up of small satellites that will be used to bypass internet issues and other problems that plague both developed and developing countries. The project was first announced in 2016 and, since then, SpaceX has been creating what it calls “the most sophisticated and largest new commercial satellite constellation in history.”
As of 2019, the company has created over 2,000 satellites, with plans to launch 16,000 more in the coming years. The network will be made up of 80 satellites in low Earth orbit, 12,000 satellites in mid-Earth orbit, and 1,800 satellites in geostationary orbit.
The low-Earth orbit satellites will help to provide internet access to remote areas while the mid-Earth satellites will deliver high-speed broadband to urban areas. The geostationary satellites will help to bridge the two networks together.
How Does Starlink Work?
Planning and implementing the Starlink network started in 2016, with the first test satellites launched in 2017. However, a Falcon 9 rocketexplosion at Cape Canaveral put that mission on hold, causing delays to the development of Starlink.
A second launch was scheduled for February 2018, but once again, the mission was put on hold due to inclement weather. The third launch occurred in March 2019, and the rest of the satellites were sent out at regular intervals to complete the network.
Once the network is fully operational, it will be capable of providing internet access to billions of people across the globe.
Why is Starlink Important?
The internet has become a fundamental part of modern life. It is used for everything from staying in touch with friends and family to researching information, finding new hobbies, managing finances, and even procuring employment, not to mention the vast array of political aspects.
If you don’t have internet access, you are essentially cut off from the world, but this is a reality, particularly in the developing world. In places like Africa, Southeast Asia, and South America, many don’t have Internet access. That’s about two-thirds of the world’s population. Unfortunately, this isn’t a problem that can be fixed by simply installing more internet cables. The issue is that there aren’t enough satellites in orbit to provide the coverage needed.
The Problems With the Current System
Communications satellites are designed to orbit at 22369.37 miles above the surface of the Earth, with the International Space Station orbiting at just 248.5 miles above the planet’s surface.
This means that the satellites are out of reach for most people on the ground. Therefore, if someone wants to use a satellite for anything, they need to be connected to a nearby ground station.
There are around 1,800 ground stations currently in operation around the world, but they can’t cover the entire planet. As a result, there are large parts of Africa and South America that don’t have any access to satellites. Even within these areas, coverage is patchy at best.
If you look at a map of satellite coverage in South America, you’ll notice that many places are completely blacked out. This is because there needs to be a clear line of sight between the ground station and the satellite. If a mountain or a building gets in the way, it will completely block the signal. So even if you have a satellite available, it may not be able to provide you with a decent internet connection.
Will People Use It?
It is estimated that SpaceX will have to deal with around 700,000 pieces of space debris when they finally launch all the satellites. But despite this, the company has already sold $1 billion in services to two unnamed customers and is expected to launch thousands of satellites in the coming years.
This is a good sign, particularly since the two customers have remained anonymous until now. While it is impossible to know for sure if people will use the network once it is launched, we can take a look at similar projects in the past to get an idea of the potential for success. For example, Inmarsat, a British satellite telecommunications company, launched a network of satellites in the late ’80s. At the time, the idea of being able to communicate with each other from the middle of the ocean seemed like science fiction. However, the system was so successful that it has been used ever since. The company has over 19 million subscribers and a market capitalization of $14 billion. It has become so successful that it is now “a world-leading provider of global mobile services.”
Conclusion
Starlink is a huge project that will see thousands of satellites put into low-Earth orbit as a way to provide internet and communications services across the globe. Elon Musk introduced the project in 2016 and since then his company has been developing what they call “the most sophisticated and largest new commercial satellite constellation in history.” There are still challenges that need to be overcome, particularly in terms of dealing with space debris. But if everything goes to plan, this will be the start of a new era in the way we access the internet.
Walk down any city construction site, and you’ll see a network of steel beams and columns rising from the ground. Why are they using steel? Because steel is strong, durable, and easy to work with. It is the iron alloy of choice for building construction.
If you’re wondering how steel is manufactured, look no further! This blog post will explain the process from start to finish.
History of Steel
The emergence of steel can be traced back to the Iron Age when it was used to make swords. History experts say that the original creators of steel were the Hittites. This Middle Eastern civilization existed during the Bronze Age and later into the Iron Age, between 1400 and 1200 B.C., in Syria and Turkey. They learned that heating iron with carbon could make a stronger metallic substance.
Historians are not exactly sure what happened to the Hittites, but the consensus is that they most likely morphed into the Neo-Assyrian Empire (912 to 612 BC).
It has also been discovered that China first worked with steel around 403–221 BC. The Han dynasty (202 BBC—AD220) melted wrought iron with cast iron, producing a steel composite.
Modern Day Uses
With the advent of the railroad construction boom in the 19th century and its ongoing requirement for metal to make the tracks, a supply issue materialized. The process was slow and tedious since there wasn’t an automatic process to fill the need.
Enter the Steel Mill
Steel mills provided the raw materials for many of the world’s most essential products. Since the first mill opened in the early 1800s, they were constantly improved and adapted to meet the needs of the times.
These manufacturing plants have helped build skyscrapers, bridges, and countless other structures. They have also been instrumental in developing new technologies, solving railway construction issues, and building assembly lines for other products.
No time was more profitable for the steel mill than during the Industrial Revolution, which began in the nineteenth century and continued until the mid-twentieth century.
And there wasn’t a company more notable for achieving the country’s manufacturing demand than Bethlehem Steel, which provided the product for 125 years, starting in 1887.
Enter the Skyscraper
Before steel was invented, the average office or apartment building would not reach more than five stories. Still, steel provided enormous strength and durability and, as such, allowed the construction of buildings taller and stronger than ever before.
How Steel is Made
Steel does not grow out of thin air. It begins with mining iron ore, which is then combined with carbon via a blast furnace. Let’s get more involved in understanding how this process works.
Mining the Iron Mineral
An ore is a natural substance found in the Earth’s service where the iron mineral can be extracted. Once the ore is removed from the quarry, it is melted and purified in a blast furnace (removing impurities and leaving only the metal).
Enter Carbon
Carbon is an element in the Periodic Table with an atomic number of 6, with four electrons in its outer shell and two in its inner shell.
Atoms with less than eight electrons in their outer shell (called the valence shell) tend to look for other atoms to bond with so that their outer shells can stabilize the atom by balancing the shell to eight electrons. This is based on the Octet Rule.
Iron has eight electrons in its valence shell, so if you bond the carbon atom, which has six valence electrons, with the iron atom, you have a molecule of two different atoms, which forms steel.
It is essential to ensure that the correct amount of carbon, approximately 0.04%, is used with iron so that the resultant product is steel.
If the wrong amount of carbon is mixed with iron, a different product will be produced, such as cast iron or wrought iron—both are inefficient in rendering steel.
Combining the Carbon with Iron Creates a Stronger Material
For steel, the two elements are combined while the iron metal is liquid hot, which alters the iron’s properties to that of steel. As a result, steel becomes an alloy (a metal made by combining two or more metallic elements) of iron and carbon.
This causes a distortion of iron’s crystalline lattice structure and subsequently enhances the metal’s strength; specifically, it increases the metal’s tension and compression properties.
It was the first cost-efficient industrial process for the large-scale production of steel from molten pig iron, using an air blast to remove impurities.
Adding Carbon Produces a Variety of Iron Alloys
As previously mentioned, iron’s characteristics change when mixed with carbon, allowing various types of metal alloys to be created. The amount of carbon added to iron changes its characteristics accordingly.
Cast Iron
Cast iron is an alloy of iron that contains 2 to 4 percent carbon, along with smaller amounts of other elements, such as silicon, manganese, and minor traces of sulfur and phosphorus. These minerals are nonmetallic and are referred to in the industry as slag. Cast iron can be easily molded into a desired shape, known as casting, and has been used to make decorative fences and other aesthetic forms.
Cast iron facades were invented in America in the mid-1800s and were produced quickly, requiring much less time and resources than stone or brick. They were also very efficient for decorative purposes, as the same molds were used for many buildings, and a broken piece could be quickly remolded. Because iron is powerful, large windows were utilized, allowing a lot of light into buildings and high ceilings that required only columns for support.
Wrought Iron
Wrought iron is softer than cast iron and contains less than 0.1 percent carbon and 1 or 2 percent slag.
It was an advancement over bronze and began to replace bronze in Asia Minor by the 2nd century BC. Because iron was far more plentiful as a natural resource, wrought iron was used for various implements, weapons, and armor.
Steel
Steel is an alloy made from iron that usually contains several tenths of a percent of carbon, which increases its strength and durability over the other forms of iron, especially in tensile strength.
Strictly speaking, steel is just another iron alloy, but it has a much lower carbon content than cast iron and about as much carbon (or sometimes slightly more) than working iron, with other metals frequently added to give it additional properties.
Most of the steel produced today is called carbon steel, or simple carbon, although it can contain metals other than iron and carbon, like silicon and manganese.
Stainless Steel
The steel alloys mentioned above have carbon integrated within them, but stainless steel uses chromium as its alloying element. The result is that each produces a very different result when it comes to corrosion resistance. Stainless steel is much more corrosion-resistant.
Galvanized Steel
Besides incorporating the general benefits of steel, galvanized steel has an added corrosion resistance strength by integrating a zinc-iron coating. The zinc protects the metal by providing a barrier to corrosive environmental elements.
Summary
The advantages of steel are numerous, from great tensile and compression strength to the speed of manufacturing to low cost; it is the metal of choice in construction when compared to iron.
Although iron and steel appear similar, they are two distinct materials with specific characteristics and qualities. Iron is a pure mineral, and steel is an alloy material that contains a percentage of carbon. Different products emerge depending on the amount of carbon mixed with iron, including steel creation.
Steel is a far stronger material, and there is no better metal currently used when strength and cost are major factors.
The Lockheed SR-71 Blackbird is one of history’s most iconic spy planes. Also known as the “Black Widow” for its unique appearance, this aircraft still stands as an impressive feat of aeronautical engineering. It holds many speed and altitude records that have yet to be broken, and there is much more than meets the eye with this plane…
The Origins of the SR-71
Before this immortal aircraft was developed, the United States relied on the famous U2 spycraft for its Cold War reconnaissance. On May 1, 1960, a U2 was spotted deep inside Russian territory, but the US was not concerned as they believed that this aircraft was impenetrable to Soviet air defenses due to its high-altitude flight. They were wrong.
A Soviet V-750 surface-to-air missile shot down the spy plane. The pilot, Francis Gary Powers, who took off from a secret US airbase in Pakistan, parachuted to the ground safely but was immediately captured by Soviet authorities and taken prisoner.
He was later released after a mutual prisoner swap between the United States and Russia; however, it was quite clear that something else had to be done if the US wanted (and needed) to continue its reconnaissance over Russia and other foreign lands without the concern of the aircraft being shot down.
Corona Spy Satellite
The United States began an ambitious project for U2’s successor. The Corona spy satellite program was one of the first. It proved amazingly successful in August of 1960 after it was able to photograph many parts of Soviet territory.
What’s even more amazing was that the pictures that the plane took were sent back to earth and successfully salvaged, resulting in an abundance of intelligence well needed as this cold war intensified. The Corona program ended in 1972.
This prototype spawned some variants. The YF-12A Interceptor, which was designed to replace the F-106 Delta Dart Interceptor/ fighter, and the SR-71 Blackbird, was designed not as a fighter jet, but as a high-speed reconnaissance aircraft.
The YF-12A was built and tested but the Air Force decided to go for the F-111 fighter/bomber; however, the SR-71 was commissioned and 32 Blackbirds were eventually built.
The SR-71 was outfitted with all the advanced concepts from its A-12 parent, as well as the necessary devices (cameras and supporting equipment) for its intelligence mission to fly over foreign territory (namely the Soviet Union). This plane was able to fly much higher than the U2 and it flew four times faster. To this day, no aircraft has surpassed the speed of the SR-71 Blackbird.
Enter Skunk Works
This top-secret R&D group within Lockheed Corporation began during WWII to research advanced fighter aircraft, but its true meaning did not materialize until after the U2 was shot down.
As mentioned, it was evident that a more sophisticated aircraft that would be able to avoid Soviet planes and missiles, as well as being less vulnerable to radar signatures were required, or to put it another way, this new prototype had to be faster, higher, and stealthier than any other aircraft currently in existence at the time. The Skunk Works design team was tasked with creating this advanced aircraft.
Development of the SR-71
The design that Skunk Works had come up with was a radical break from conventional aircraft design. This plane would have a long, curved nose that would house a long-range camera and a shorter curved section behind that would house the pilot.
The idea behind this design was that it would significantly reduce the plane’s radar cross-section. Most of the aircraft’s volume would be behind the center of gravity, making the aircraft “lighter” from the perspective of radar. This would reduce the aircraft’s weight and make it fly even faster.
The plane would also be designed to minimize airflow, reducing drag and increasing speed. And all of this would be done with a plane that could carry almost 10,000 pounds of fuel and up to 10,000 pounds of payload.
Its futuristic profile made it difficult to detect on radar. Even the black paint used, full of radar-absorbing iron, helped hide its existence from the Russian radar defenses. Due to the plane’s unique design, some engineers viewed it as more of a spaceship than an aircraft.
The mineral titanium was one of the main reasons for the SR-71’s success. This metal is almost as strong as steel but lightweight enough not to allow the plane to fly and maneuver very well. Titanium is also able to withstand enormous temperatures when flying at 2,200 mph (3,540 kph).
And all this was done before digital functionality became commonplace.
Titanium and the Soviet Union
Even though titanium is the ninth most common element in the earth’s crust, its resources are lacking in the United States. And ironically, all the places where this mineral is abundant are in the Russian territories, so the United States created dummy companies to hide who was purchasing this needed mineral.
This aircraft was truly an extraordinary feat of engineering, and it had many specifications that would go on to set records and even become standards for future planes.
It had a crew of one and could fly at Mach 3.2 (2,455 MPH) at a height of 85,000 feet. That is almost halfway into the Earth’s stratosphere, and with a fuel capacity of 36,000 pounds, it could fly for over 2,500 miles without having to refuel.
Because it was designed to fly at very high altitudes, the SR-71 was pressurized, allowing the pilot to fly without a spacesuit. While flying at those altitudes, the plane would also be able to fly through weather that other aircraft could not fly in.
How Fast is the SR-71?
As mentioned this aircraft could fly at Mach 3.2. That’s faster than a bullet! Because the plane was streamlined, it was able to fly at those speeds without creating dangerously high pressures on the airframe. And this meant that the aircraft was able to maintain its altitude without using a lot of fuel to keep itself aloft.
This was a massive advantage for the SR-71, as it would let the aircraft fly for hours before needing to refuel. The speed record was set by retired Air Force colonel Bob Gilliland, who flew it from New York to London in 64 minutes, smashing the previous record. This equates to an average speed of 2,189 mph, which is still faster than any aircraft in service today.
Other Innovations by the Blackbird
As if breaking speed and altitude records weren’t impressive enough, the SR-71 also pioneered many other technologies that are still in use today. Here are some examples.
The SR-71 used a special fuel to cool itself, which is now used in many modern engines.
It had a special paint that didn’t reflect visible light or infrared light, making it incredibly stealthy.
The plane’s cockpit was also extremely advanced, with a heads-up display that projected critical information directly onto the windshield.
The navigation system was revolutionary, using Doppler beacons to accurately calculate the plane’s position.
The plane’s way of communicating with ground control stations was unlike anything used before. It had a special method of transmitting information as bursts of radio waves that could be received by a single ground station at a time. This was necessary because the aircraft had no way of knowing which ground station it was closest to.
The plane had a special method of using the airflow over the aircraft to cool its engines, which was necessary to prevent them from overheating at the plane’s high speeds.
Conclusion
The SR-71 Blackbird was one of the most advanced aircraft ever created. It pushed the boundaries of aeronautical engineering, and even in the modern digital age, it is still a very impressive machine.
This supersonic aeronautic advancement was extremely efficient and could travel long distances at supersonic speeds while carrying heavy payloads. It was also extremely stealthy, making it a difficult target to see and track.
Despite having been decommissioned in the 1990s, the SR-71 still holds impressive speed and altitude records. It truly is one of the most impressive aircraft ever created and deserves its place as a legend in aviation history.