One More Step to Mars!

The Next Step!

The world watched in awe as Neil Armstrong put his foot on the moon’s surface on July 21, 1969, and his famous words, “That’s one small step for man, one giant leap for mankind,” resonated across the globe.

Now, 50 years later, we begin our lunar quest again. This time with advanced technology only dreamed of in the mid-20th century. A sci-fi fantasy then, but not anymore. Let’s look at what’s in store for this new, exciting journey!

Artemis

The Orion rocket. Part of the Artemis System
The Orion rocket. Part of the Artemis System

Unlike Neil Armstrong’s day, the Artemis project is led by NASA but includes a collaboration of international partners and is designed for greater ventures beyond the moon. A stepping stone if you will, with the final destination – Mars.

Named after Apollo’s twin sister, Artemis is a fitting name for this venture, as one of its plans is to put the first woman on the moon. The moon will act as a testing ground for the new technologies, and if successful, it will pave the way for these systems for deep space exploration.

Another difference from the 1969 moon landing is that the new spaceship will land on the lunar south pole. This is of particular interest to scientists since this region has water and ice. Water is a critical resource for sustaining life and can also be converted into oxygen for breathing and hydrogen for rocket fuel.

This research will lead to establishing a sustainable infrastructure that can support a long-term human presence.

The Programs Supported by the Artemis Project

The development of the Space Launch System (SLS) and the Orion spacecraft are two of the major developments currently being developed. Let’s take a closer look.

The Space Launch System

Artemis 1 Moon Rocket on the launch pad at Cape Canaveral Florida photograph taken March 2022
Artemis 1 Moon Rocket on the launch pad at Cape Canaveral Florida March 2022. iStock

The SLS is the super heavy rocket that will propel the Orion spacecraft and its crew into deep space. This is the first of the two main components of the Artemis project. The SLS consists of a rocket and its boosters that will blast the astronauts to the moon and later to deep space.

It will lift off with 8.8 million pounds of thrust and is equipped with four RS-25 core engines in two boosters and an upper-stage booster. They will be using liquid hydrogen and oxygen as their fuel.

No other rocket in history will have the advancements of the SLS. With its ambitious design for deep space, it will contain life support technology for long journeys, advancements in navigation and communications, and a powerful radiation shield for re-entry.

The Orion Spacecraft

The Orion Spacecraft
Orion spacecraft. Elements of this image furnished by NASA. iStock

The Orion Spacecraft is the reusable capsule located at the upper component of the SLS where the astronauts will reside and will contain the modules that will land on the moon. Similar to the lunar module that landed on the lunar surface in 1969.

It can provide life support for up to six crew members for up to 21 days. Orion is a critical part of NASA’s Artemis program and will be the rocket used to land on the lunar surface and to prepare for the mission to move on to Mars.

 

What are White Dwarf Stars?

White Dwarf Star
White Dwarf Stars. Remnant of a dead star in space. The core of a sun after his death. iStock

Stars Can Die in Many Forms

At the end of a star’s life cycle, a star may morph into a white dwarf, a red giant, a neutron star, or a black hole. It all depends upon the amount of mass that is contained in the star’s central core, along with the mass’s gravity.

The more mass that a body contains, the more gravity that is produced, so the more mass an object has, the more gravity that is sustained, and consequently, the more pressure on the object because of its gravitational pull.

llustration of the CNO Cycle of the fusion process.
Illustration of the fusion process. Wikipedia CC

It is this pressure that provides the extreme heat that is generated and subsequently, the fusion of atoms. The types of elements and the density that are fused determine if the dying star will be a dwarf, giant, neutron, or black hole. These rules of physics are universal.

Death Begins

Stars die when the fusion process ceases. Then, depending on its size, it will change into one of the types mentioned above.

Photo of the Sun by NASA
Photo by NASA on Unsplash

Our sun, which is in the category called the main sequence, is not an extraordinary star by any means, although we may feel that is not the case here on Earth, as we mortals cannot even set our eyes on it for very long.

The fact remains that in comparison to other stars in our Milky Way Galaxy and other galaxies, our sun is a mere pea when equated to some of the giants in the universe.

With that said, when our sun dies, it will expand to become a red giant.

How AI is Changing Traffic

Artists conception of AI traffic control along a highwat
iStock

We have all been inundated with newscasts about artificial intelligence and how it is changing our lifestyles, and traffic control is no exception. From the Belt Parkway to the Long Island Expressway and from Brooklyn to Montauk, AI is coming to a town near you.

Here are some ways in which AI is contributing to traffic reduction:

  • Traffic Prediction and Management:
    AI algorithms analyze historical traffic patterns, real-time data, and other sources to predict traffic congestion. This information allows authorities to proactively manage traffic flow and implement measures to avoid potential congestion problems.
  • Smart Traffic Lights: How many times have you been stuck at a light and yelled “Why is this light taking so long? It’s 3:00 am and no one is on the road”? AI-powered traffic light control systems can adjust signal timings based on real-time traffic conditions. These systems are designed to keep traffic moving as optimum as possible.
  • Route Optimization:
    Navigation systems use AI algorithms to provide drivers with real-time route recommendations that consider current traffic conditions. This helps distribute traffic across different routes, reducing congestion on commonly used paths.
  • Autonomous Vehicles:
    The development and integration of autonomous vehicles can potentially reduce traffic by improving overall traffic efficiency. AI-driven self-driving cars can communicate with each other to optimize spacing and speed, reducing stop-and-go traffic patterns.
  • Parking Solutions:
    AI can assist in finding parking spaces efficiently. Smart parking systems use sensors and AI algorithms to guide drivers to available parking spaces, reducing the time spent circling for parking, which contributes to traffic congestion.
  • Public Transportation Optimization:
    AI is used to optimize public transportation routes and schedules based on demand and real-time data. This helps ensure that public transportation systems are efficient and can serve more people, potentially reducing the number of individual vehicles on the road.
  • Traffic Incident Detection:
    AI systems can analyze data from various sources, such as surveillance cameras and social media, to quickly detect and respond to traffic incidents. Timely management of accidents or road closures can prevent the buildup of congestion.
  • Dynamic Toll Pricing:
    AI is utilized to implement dynamic toll pricing based on traffic conditions. Higher tolls during peak hours can encourage the use of alternative transportation or off-peak travel, helping to smooth out traffic flow.

Summary

Artist conception of an AI traffic monitoring system
iStock

By combining these AI-driven solutions, cities and transportation authorities can work towards creating more efficient and sustainable transportation systems, ultimately contributing to the reduction of traffic congestion. However, it’s important to note that the effectiveness of these measures depends on their implementation, infrastructure, and public acceptance.

 

What is a Nebula?

The Nurseries of Life

Photo of a nebula
Image by Gerd Altmann from Pixabay

Take a telescope, any telescope, or even binoculars and on a clear day you can see some of the most colorful and beautiful objects in space. These objects are nebulas. The birthplace of stars. It is where it all begins.

Planting the Seeds

When we say seeds, what do we mean exactly? Well, these seeds are actually vast clouds of gas and dust that are floating in space. They come from stars that have previously exploded and left their remnants to roam the universe around like lost soles.

Think of dropping seeds into a pond and watching them float around in the water. Some will collide and some will be pulled away from the other seeds but if that is all there is, we would have these particles floating around arbitrarily for infinity.

Fortunately, there is more than just this particle chaos.  A force is involved that will put all these disorganized fragments to converge into something meaningful.

Helix Nebula
Helix Nebula. Photo: NASA Via Wikipedia CC

What is This Force that Pulls the Particals Together?

The easy answer – gravity. Yes, gravity pulls these particles together. So let’s imagine the nebula as a giant, fluffy cloud in space. Deep inside this cloud, there are regions where the gas and dust are getting squished together. The pressure and temperature rise in these squeezed spots, and eventually, a new star is born from the material in that region.

So, in a way, a nebula is like the starting point for a star’s life. It’s where the ingredients for making a star come together, and as they collapse under their gravity, a bright new star is born, lighting up the cosmic neighborhood.

The Helix Nebula above, which some call “The Eye of God” or “Eye in the Sky” because it resembles a cosmic eye, is located  700 light-years away from Earth. A mere speck of a distance when speaking about the vastness of the universe and is 2.5 light-years in diameter.

The nebula was formed because of the death of a star similar to our Sun. As the star depleted its nuclear fuel, it expanded into a red giant, shedding its outer layers into space.

To learn more about the different types of nebulas there are in space,  Wikipedia gives a complete list of these fascinating and beautiful clouds of life-forming stars.

The Birth of a Star

This phenomenon is the result of gravity pulling gas and dust together. It is a process that is multiplied millions of times within the nebula and the beautiful objects that are forming are the fetal stages of stars being created.

Specifically, the gas is a combination of hydrogen and helium which clump together to form larger masses and since gravity gets stronger as the mass of the object gets bigger, additional matter is attracted to the object, which eventually becomes massive enough to form a star. In other words, it is the gravitational force of an object that is directly proportional to the object’s mass.

Nebula’s Molecular Breakdown

Illustration of an atom's valence electrons
Photo: Pixaby

Unbeknownst to many, most of the universe is not a complete void. There is much (loose) matter floating around between the stars. And this matter is not visible to the naked eye, as it is in its atomic form; such as the atoms of hydrogen and helium, as well as plasma and other materials. This sub-atomic matter is called the interstellar medium (ISM). More specifically, the interstellar medium is composed primarily of hydrogen, followed by helium with trace amounts of carbon, oxygen, and nitrogen.

In areas of the ISM where the atomic particles are densely populated, the formation of molecules begins most commonly hydrogen (H2). The more the molecular masses clump together, the greater their gravitational attraction will be to other bodies and particles in their vicinity. As the particles clump further to form larger and more massive structures, they attract more dust and gas.

The Nuclear Element

Enter nuclear fusion, since the gravitational pressure becomes so high that the fusion of hydrogen atoms occurs. This results in the emission of high-energy electromagnetic radiation, which in turn ionizes the outer layers of gas. Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons to form ions.

Ionized gas is known as plasma, and plasma along with electromagnetic radiation is now added to this mixture. This then materializes into the early stages of star formation.

Hence, the formation of stars occurs exclusively within these molecular clouds. This is a natural result of their low temperatures and high densities because the gravitational force acting to collapse the cloud must surpass the forces that are working to push the particles outward and the molecular cloud is now a nebula.