Category Archives: Atomic Structure

Items that deal with the atom and related fields

The Carbon Atom

Illustration of the carbon atom
Bohr Illustration of the Carbon Atom. Photo: Photo by dacurrier on Pixabay

Carbon Element Overview

If you watched Star Trek, in one episode, the Nomad, the robot that referred to humans as carbon-based lifeforms, and for good reason. Because that’s what we are! 

Virtually every organic compound on Earth contains carbon. Life as we know it would not exist without carbon. That’s because it has a unique ability to bond with itself and other elements fairly easily, due to its need to find more electrons to bond with.

Carbon is the sixth element in the periodic table with the chemical symbol C and an atomic number of six. It has two electrons in its inner shell and four electrons in its outer shell (valence shell) as shown in the Bohr illustration above.

Because the carbon atom has a natural desire to fulfill its outer shell with eight electrons or saying it another way, it needs to fill up its outer energy level, it will constantly look to bond with other atoms to obtain four more electrons. Once bonded, the atom’s outer shell is fully stable. Carbon atoms can form bonds with other carbon atoms, but they can also form bonds with almost all other elements. 

Carbon can exist in multiple different forms known as allotropes: graphite, diamond, and others. It’s also a non-metal, but one of the most important elements on earth. Carbon atoms have many uses, from making steel to fueling cars.

This article explores almost everything you wanted to know about carbon atoms and their various forms.

Types (Allotropes) of Carbon Molecules

Graphite

Graphite showing a pencil
Image by Gino Crescoli from Pixabay

Graphite is an allotrope of carbon. It’s a black and soft mineral that is commonly found in nature in the form of pencils. Although graphite is often treated as a mineral, it’s more commonly considered a form of carbon. Graphite is very soft and can be easily compressed into a very thin sheet.

Graphite is made of layered sheets of carbon atoms that form stacks known as graphene. Each layer is made of carbon atoms arranged in a hexagonal pattern with strong covalent bonds. These layers are held together by weak intermolecular forces that are easily broken by heat. That’s why pencils can be erased by rubbing graphite and paper together!

The Diamond

The diamond is another allotrope of carbon. The only difference between the two is that diamonds are made of carbon atoms arranged in a cubic pattern. This makes diamonds a hard and rigid substance. 

Diamonds are also made of graphene sheets that are held together by strong covalent bonds. These properties make this mineral extremely valuable, but they’re also highly limited in supply. That’s why they’re one of the most expensive materials on earth. 

It’s estimated that only 0.1% of the carbon that enters the earth’s surface is converted into a diamond. This is large because diamonds are formed at very high pressures beneath the earth. 

When carbon deposits are subjected to a combination of very high temperatures and pressure, they can change to diamonds. It may take a long time before the carbon is changed into a diamond, but it will change. It all depends upon the temperature and amount of pressure that is put on it. We can’t find a better demonstration than when Superman crushed coal (a product of carbon) simulating the creation of a diamond. 

Carbon Bonds

The covalent bonds that can form carbon can result in many different types of molecules. Carbon can form thousands of bonds with other elements. This is why carbon has so many uses in the world.

Fullerenes

Fullerenes are carbon molecules that are composed of many rings of carbon. They were accidentally discovered in 1985 by two scientists who were studying carbon soot. The discovery was so exciting that the scientists won a Nobel Prize for their discovery!

C 60 – the most common carbon molecule – has 60 carbon atoms arranged in a spherical pattern. This sphere can be thought of as a football because the name “fullerene” comes from two English words: football and carbon.

C 60 is known as a buckyball and can be used as a tool for scientists. Yes, that’s what it’s called. Buckyballs are carbon atoms that are bonded to three other carbon atoms. Scientists can use buckyballs to study the structure of other molecules.

Why is There So Much Carbon in the World?

Carbon is the fourth most abundant element in the universe. Carbon is created in the interiors of stars and then released into the universe when those stars expire. It is present in the earth’s crust in the form of minerals and organic compounds. C 60, the largest buckyball, is only possible at a pressure of 100 gigapascals – the type of pressure that’s found inside giant planets. (A pascal is a unit of pressure. Gigapasclal is that unit of pressure x 1 billion).

Diatomic Carbon

Diatomic carbon is the simplest form of carbon. It contains two carbon atoms with one double bond between the atoms. A double bond is where an atom shares its valence electrons with two other atoms, in contrast to a covalent bond created by lighting and oxygen in the air, but it is usually destroyed by other compounds in the atmosphere.

This is important because diatomic carbon is a greenhouse gas. Carbon atoms are released into the atmosphere when plants are burned. These atoms are then oxidized by the other compounds in the air to create more diatomic carbon. Diatomic carbon is one of the most important greenhouse gases in the atmosphere. This is precisely why it was released in the first place!

Conclusion

Carbon is the element that forms the molecules for all known forms of life on earth. It’s the only element that can form molecules with a ratio of electrons to protons that’s necessary for biology.

Carbon is not a metal. Metals are largely defined by their electrical conductivity. Carbon is a non-metal and does not conduct an electrical current.

Illustration of an extraterrestrial
iStock

Carbon is also very common in the universe and can form multiple different types of bonds with other elements, so when Noman called humans carbon-based life forms, because of its abundance in the universe, maybe he met other carbon life forms in the galaxy we just don’t know about yet!

 

What is the Atom Made of?

Did you ever see the movie “The Incredible Shrinking Man”? If you have, did you ever wonder what would happen to him when he gets so small that he would be the size of an atom? And if so, could he get any smaller?

Maybe we have the answer because atoms are particles that exist in nature and cannot be broken down into smaller components. Everything we see around us is made of atoms, from tables and chairs to people and pandas. 

What Makes Up the Atom?

Illustration of the Atom
Atoms consist of three basic particles: protons, electrons, and neutrons. Nucleus. This atom has a neutral charge as it contains the same amount of protons and electrons. Photo: iStock

Comparatively speaking, atoms contain mostly space but don’t let that fool you into thinking they are not important. The components of the atom and what makes up the atom are fundamental to our understanding of how matter is assembled. That includes living organisms, both here on Earth and elsewhere. 

Now let’s talk about the components. A typical atom consists of a nucleus in its center. This nucleus contains neutrons and protons (together they’re called nucleons). Protons have a positive charge. Neutrons have neither positive nor negative charges. They are ‘neutral’.

Surrounding the nucleus are electrons, which are bodies outside of the nucleus and orbit around it, the same as our planets orbit their sun. Besides the size difference in this comparison, the only major difference is that the planets orbit the sun because of gravity, and electrons orbit their nucleus because of magnetism.

Note: The above scenario is simplified to envision the structure of the atom. The real fact is that electrons do not orbit the nucleus as the planets do. Their actions are more complex than that. See our article on Quantum Theory for a better understanding of how electrons maneuver around the atom’s nucleus.

The Electron

An electron orbits the nucleus of the atom. They are negatively charged particles. The electrons are the only particles outside of the atom’s nucleus.

Neutral Atoms

A neutral atom doesn’t have any charge, so it doesn’t interact with other atoms. You can think of it as a bag of protons, neutrons, and electrons that just float around in space. Most neutral atoms are made up of an equal number of protons, neutrons, and electrons. For example, hydrogen has one proton, one neutron, and one electron. Helium atoms have two protons, two neutrons, and two electrons. This is why we usually refer to these atoms as neutral.

The Proton 

Periodic table
Image by Calua from Pixabay

Protons are mainly found in the nucleus, although a few may be found in the outer electron orbit. The number of protons in an atom is what makes it what it is. For example, the elements in the periodic table have numbers associated with them. The number on the upper right corner defines its atomic number; that is, it tells us the number of protons in that element. Atomic weight is the number of protons and neutrons together.

Neutrons

The neutron’s only job is to protect the proton from becoming too positively charged. It doesn’t matter if the atom has too many or too few neutrons; it’s fine either way. The neutron doesn’t interact with electrons or anything else outside the nucleus, so it’s usually just along for the ride.

The valence electrons (see below) of an atom are the electrons that are available to form chemical bonds with other atoms. In general, valence electrons are those that can be shared in their atomic orbitals.

Each main group element has a fixed number of valence electrons, which makes it easier to predict how likely an element is to react with another one and whether or not a given element can act as a reducing agent. Combining all of this information, we can deduce the oxidation state (or valence) of each element and predict whether or not they will react with one another based on these findings. Let’s take a closer look at what these valence electrons are and what role they play in chemical reactions.

Ions

Any time an atom loses or gains an electron, it becomes charged. If it loses an electron, it becomes positively charged. because there are more protons in the atom than electrons. If it gains an electron, it becomes negatively charged. 

When atoms gain or lose an electron, they can bond together with other ions to form other elements; thereby creating a new atom or molecule.

Note: Regardless of the number of electrons or protons that are lost or gained, the ‘makeup’ of the atom is associated with the number of protons that are in the atom, as designated in the upper right corner of each element of the periodic table.

So What are Valence Electrons?

Illustration of an atom's valence electrons
Photo: Pixabay

These are electrons that are in the outermost shell of an atom and if these atoms have less than 8 electrons in this shell, they will look to find other atoms to bond with so that their outer shells can reach 8 electrons.

This is the Octet Rule, which states that atoms with less than 8 electrons in their outer shell will tend to bond with other atoms so that they can share their valence shells and have eight electrons, hence, the “octet (8)” rule.

From our explanation of ions above, it is these electrons that are participating in the chemical reactions (bonding) with other atoms, since they are the farthest away from the nucleus and thus, have the least magnetic force attached to them. In other words, can easily get detached or pulled from a nearby atom.

So, it is these electrons that are the ones that cause the sharing of electrons with other atoms.

Valence Proximity

The electrons that are closer to the nucleus are referred to as core electrons since they aren’t as likely to participate in chemical reactions. The core electrons are essential to the existence of an atom because without them the atom would collapse in on itself. However, they’re not as likely to be involved in chemical reactions with other atoms because they’re so close to the nucleus.

Valence Summary

The valence electrons are the outermost electrons in an atom that is available to form chemical bonds with other atoms. The number of valence electrons for each element is fixed, and we can use the location of these electrons to predict how likely it is for an atom to bond with another. The more stable the core electrons are, the more difficult it will be for an atom to accept its electrons. If you’re studying chemistry and need to understand how chemical reactions work, it’s important to understand what valence electrons are and how they are used during chemical reactions.

All Together Now

The negative charge of the electrons and the positive charge of the protons are what maintain the orbit of the electrons around the nucleus. This is referred to as an electrostatic charge or electromagnetic force, or to put it another way, it is the attraction of the positive charge from the negative charge of the electrons that causes this orbit to exist.

Now, let’s drill down to more specifics of the atom’s components and how their respective charges make up different types of atoms. 

Conclusion

Atoms are the smallest particles of matter that cannot be broken down into smaller components. Everything we see around us is made of atoms. Atoms are mostly empty spaces, but they’re fundamental to our understanding of how matter works. A typical atom consists of a nucleus with neutrons and protons (together called nucleons) inside it, as well as electrons that orbit the nucleus. The electrons have a negative charge; the nucleons have a positive charge. 

Neutral atoms are made up of an equal number of protons, neutrons, and electrons. Ionic compounds are made up of positively charged ions and negatively charged electrons, and they have a strong attraction to other atoms and molecules. Electrons are negatively charged particles that orbit the nucleus, making them useful tools. Atoms are the building blocks of everything in the universe, and they are fundamental to our understanding of how matter works.