All posts by HFM

Top Five Countries with Largest Reserves of Natural Gas

Stove with gas lights running
Source: https://pixabay.com/images/id-2257

Natural gas is considered to be one of the most essential fuels used in households. Natural gas, which primarily comprises methane is commonly used in oven and stoves in almost every country of the world. Chemically, natural gas is composed of one part of carbon and four parts of hydrogen. It is much lighter in weight compared to oxygen. This is the reason why it evaporates very rapidly. Natural gas has a pungent smell which can be noticed quite easily. 

This gas is an important fossil fuel and originally natural gas reserves were classified as associated and non-associated reserves. Associated gas reserves are found along with oil reserves. They can be extracted or transferred back to the reservoir. Non-associated gas reserves are gas reserves found independently. However, as of now, we categorize natural gas into two different types; conventional natural gas and unconventional natural gas, also known as shale gas. These two distinct types of natural gas are found in different types of rock formations. Regardless of the type, natural gas is primarily used as a domestic fuel. It also has wide industrial applications and is also used as an alternative fuel for vehicles. 

Today the global reserves of natural gas are estimated to be 7,121.4 trillion cubic feet. 80% of the total proven natural gas reserves are found in eight countries. It is expected that there are other reserves of natural gas, which are not proven so far. From the data of 2018, the top five countries with the largest reserves of natural gas are: 

Russia

Russia holds the largest reserves of natural gas in the world. As of 2018, the country’s reserves are estimated to be 1,688.23 trillion. This makes up for around 24% of the global reserves of natural gas. Hence, Russia has a big stake whenever the global gas prices fluctuate. More than 50% of the Russian gas reserves are located in the cold region of Siberia, specifically in the Nadym-Pur-Taz (NPT) region of the upper-western Siberia. The three largest gas fields in Siberia are Yamburg, Urengov, and Medvedev, which account for nearly 45% of the total country’s gas output.

Gazprom, a state-run company, is responsible for more than 80% of the gas production in the country. This is one of the biggest known stakes in a natural resource for a single entity as this accounts for 20% of the world’s gas production. 

Iran

Second on the list with the largest gas reserves is Iran. The country which has always been under political instability and sanctions has managed to capitalize on its natural resources. Iran is not only rich in natural gas but possesses many other natural resources. 

Iran holds almost 1,200 trillion tons of natural gas, which accounts for almost 18% of the total global gas reserves. The largest gas field in the world, the South Pars is located in Iran. More than 80% of the Iranian gas reserves are non-associated gas reserves. This means that they are not found along with reserves of crude oil. 60 % of the country’s total gas reserves are located in the ocean as South Pars extends to Qatar and a large part of it is in the ocean. This gas field is responsible for more than 25% of the country’s total gas output. Other major gas fields in Iran include the North Pars, Kish, and Kangan. 

Recently, Iran discovered a new natural gas reserve, which according to its oil ministry holds 19 trillion cubic feet (tcf) of the resource and could potentially produce 400 million barrels, worth about $40 billion. However, increased sanctions by the US may prove cumbersome and delay or even halt their natural gas exports from this area. We’ll have to wait and see how this plays out.

Qatar

Qatar, a Middle Eastern nation, which is the largest supplier of LNG liquid natural gas comes third on the list of largest gas reserves.. The country possesses around 175.5 billion cubic meters of proven natural gas reserves. The South Pars located in Iran extends to Qatar. This is the world’s largest offshore field holding the largest reserves of non-associated gas. Another major gas field located in Qatar is the North field. Also, the Barzan gas project played an important role in increasing the output of gas in Qatar since its completion in 2015.

Saudi Arabia

The global oil-producing giant and a leading member of OPEC comes fourth on the list. The country holds over 7.9 billion cubic meters of gas reserves which makes up almost 4% of the world’s total proven gas reserves. 

The Famous Ghawar onshore, Ghawar offshore, Safaniya, and Zuluf fields produce more than 50 % of the total gas output. These gas fields account for more than 55% of the total reserves in the country. There are many nonassociated gas fields in the country as well. They include the Karan field, Arabiyah field, and Hasbah gas fields. 

Turkmenistan

5th on the list is Turkmenistan. The country also holds proven gas reserves of 7.57 billion cubic meters which account for almost 4% of the world’s supply. The reserves are located mainly in the Amu Darya Basin in the South East and the Murgab South Caspian Basin which is located in Western Turkmenistan. The Dauletabad field is by far the oldest and the largest gas field in the whole country. 

The country lacks proper infrastructure and there have been very few developments when it comes to the oil and gas sector.  

There are some other major players when it comes to global reserves of natural gas. This includes countries such as Venezuela, Nigeria, Australia, Iraq, China, and Israel with exports planned to go to Egypt and Jordan shortly. Additionally, Israel recently signed a deal with Greece and Cyprus to export natural gas to these countries as well. 

 

 

Clear Quartz Crystal: The Master Healer

Photo by Jason D on Unsplash

Clear Quartz, part of the biggest and most diverse family in the mineral kingdom is the most iconic crystal of the quartz family. Clear quartz is abundantly found all over the world, as it can develop under different climatic conditions.

Also commonly known as the Rock Crystal or Ice Crystal, this gemstone is valued by not only healers and spiritual leaders, but by scientists as well. As this beautiful clear rock has extraordinary characteristics, it has long been considered the source of light for humanity.

History

Various cultures all over the world have included clear quartz crystals in their traditions and ceremonies. The crystal gets its name from the Greek word krystallos, which means ‘ice.’ It was named as such because the ancient Greek philosophers thought that it was a permanent form of ice, frozen so hard, preventing it from thawing.

Clear quartz has been held in high regard by each culture with a unique meaning. The Japanese thought of it as a symbol of purity, patience, and space, calling it the ‘perfect’ jewel.’ Native North Americans believed the rock to be animate, breathing once every hundred years. 

Some cultures used it as a religious talisman and included it in funeral rites, considering it as an urn for the spirits of their ancestors, and used it to carve out crystals shaped like human skulls. Some people also used the rock for its metaphysical power to heal illnesses.

Types of Quartz Crystals

Quartz Crystals
Photo by Jene Yeo on Unsplash

These minerals belong to the Quartz belong to the trigonal crystal system, referring to the hexagonal crystal family. Until recently, their names were coined from the quartz’s color, but scientists have now developed naming schemes that refer to the molecular structure of the mineral, with color being a secondary factor and there are several varieties. 

Some of the most popular types are listed below:

Amethyst

Also referred to as the Bishop’s Stone, the stone’s color ranges from soft lavender to deep purple. Representing royalty and spirituality, the stone is thought to promote creativity.

Citrine

The Lucky Merchant’s Stone ranging from shades of transparent and pale to golden yellow is believed to attract joy, success, and all the good things in life.

Rose Quartz

Also called the Stone of Unconditional Love, its pale pink to deep reddish-pink hues symbolize love. It is said to promote loving feelings for oneself and others.

Smoky Quartz

The Stone of Power displays different shades of black and brown. A powerful grounding stone, it has the alleged ability to absorb negative vibes from the surroundings.

Tiger’s Eye

Popular for its chatoyancy and layers in rich gold, red, and brown colors, this stone is a symbol of courage and the right use of power. The stripes across it appear because of its mixture with iron.

Carnelian

The orange and red warm and fiery tones of the stone help boost confidence and motivate the person. It is believed to attract warmth and bliss in life.

Physical Properties of Clear Quartz Crystal

  • Chemical Formula: SiO2
  • Color: Clear, Multicolored, All spectrum colors, Black, Brown
  • Crystal Structure: Hexagonal
  • Hardness on Mohs Scale: 7
  • Cleavage: Indiscernible
  • Luster: Vitreous
  • Transparency: Transparent to Translucent

Appearance

Rose Quartz Healing Gemstone
Rose Quartz Healing Gemstone. Photo: Maxpixel

The clear quartz crystal looks just as beautiful as ice. The ordinary-looking gemstone tends to hold within its pure light the entire color spectrum. Although it has the term ‘clear’ in its name, it can be transparent, milky, or striped.

The smooth hexagonal prism has a cluster formation. It occurs in various shapes and sizes, with naturally faceted terminations at either one or each end of the crystal. Its shape and size depend on the rate at which the crystals are formed.

Clear quartz crystal forms in compact masses and druses, and oftentimes as dense, fibrous, or grainy formations without visible crystals.

Properties

Believed to carry the traits of the master healer, clear quartz is used by healers to open the heart and mind and balance and guide one’s, inner soul. This stone is quite adaptable as it can be programmed with any intention. It gives an energy boost and aids in healing and can help to achieve any purpose. However, spiritualists believe that it’s important to cleanse this magnificent crystal.

Clear Quartz is quite useful as it has piezo- and pyroelectric properties that can transform mechanical or heat energy into electromagnetic energy. Due to its ability to direct, intensify, store, and modify energy, it is used in various technological devices.

The multifaceted and versatile rock is used to encourage self-awareness and attract love and success. Once you feel in sync with it, the stone can help to lift the mood. It protects the aura by creating a force field of healing negative ions. 

It also improves one’s intellect, strengthens and clears the mind, helps to concentrate better, and improves memory. This stone helps to sleep better and is useful to understand the meaning behind dreams. The clear quartz crystal can also be used to amplify the energy of other stones.

Physical Healing Properties

Considered the master healer crystal, it can be employed to cure several conditions. It sets the body in balance and energizes it, by stimulating the immune and circulatory system. It can prove to be useful to relieve headaches, and migraines, and also stabilize dizziness.

The rock is great for providing support with exhaustion, metabolism, and reducing weight. It can be quite helpful in treating digestive issues, diarrhea, and infections in the kidneys and bladder.

Clear quartz crystal also helps to soothe sore and wounded areas. It works wonders in treating skin problems and burns in particular.

Emotional Healing Properties

Acting as a deep soul purifier, using the stone clears the soul and mind. The crystal helps to remove the negative energy within a person and replaces it with positive vibes. It makes the user self-conscious, patient, and focused and gives an energy boost.

An Overview of Shale Gas

 

What is Shale Gas?

Shale gas is natural gas that is trapped within the tiny spaces of shale formations. Shale is fine-grained rocks formed from mud, silt, clay and organic matter. It is a hard, low permeable mudrock and can be a rich source of petroleum and natural gas. However, the oil and gas trapped in shale are very difficult to extract because either it is trapped in small pores or is absorbed onto clay mineral particles that form the shale.  

With advancements in technology and the use of a combination of various extraction techniques, large volumes of shale gas have been extracted over the last decade. Extraction techniques such as horizontal drilling and hydraulic fracturing have allowed access to large amounts of shale which were previously uneconomical to produce. The extraction of this gas gives hope to the world where the energy demand is increasing exponentially. It is expected that the reserves of shale gas are enough to sustain the global economy for centuries. 

Shale Gas vs. Natural Gas  

Shale gas is a type of natural gas. It is a mixture of various hydrocarbon gases and consists mainly of methane. However, there is a difference in how the gas is distributed under the surface of the Earth. There is also a difference in how it is extracted from the Earth.

Natural gas reserves are formed when the gas travels towards the Earth’s surface. The gas originates from an organic-rich source into a permeable reservoir rock. This reserve of gas is trapped by another layer of rock which is impermeable. So essentially, natural gas is trapped between layers of two different types of rocks, but through vertical drilling, the natural gas is extracted. 

On the other hand, shale also forms from organic-rich sources. However, these sources are present within the shale rock. The rock is impermeable and this inhibits the gas to migrate towards the surface of the earth. As a result, the gas remains trapped within the rocks. To extract this type of gas, a combination of techniques called hydraulic fracturing and horizontal drilling is used. The wells are drilled horizontally. Later water, chemicals and sand are pumped into the wells to break the hydrocarbons. This process is known as hydraulic fracturing. Together, these processes allow for the extraction of the hidden resource. 

Global Reserves of Shale Gas 

There is a rising environmental concern on the extraction of shale gas. Insertion of water and chemicals into the wells can disturb the water table. It can also contaminate the potential sources of water for nearby habitats. However, considering the exponential increase in global energy demand, there is an increasing extraction of shale gas. 

It is interesting to note that many countries around the world hold large reserves of shale gas. Below is a description of the five countries which hold the largest reserves of shale gas in the world. 

China 

Shale gas exploration is a very recent practice however, it progressed very rapidly. China holds almost 770 trillion cubic feet of recoverable shale gas reserves with more than 26.98 trillion cubic feet of proven shale gas reserves. In 2016, the overall production of shale gas in China was around 280 billion cubic feet and it is expected to reach more than 1 trillion cubic feet by 2020.

Argentina 

Argentina is known to be the largest producer of dry gas. It also holds the second-largest reserves of shale gas. The country possesses 802 trillion cubic feet of shale gas. The extraction of shale gas from Argentina began after 2013 when Chevron and YPF, a vertically integrated energy company in Argentina, signed an agreement to develop the shale gas facility in the VacaMuerta field.  

Algeria 

Algeria, the largest country in Africa and the Arab world is also the third-largest country in the world when it comes to shale gas reserves. It possesses 70 trillion cubic feet of technically recoverable shale gas. Significant foreign investment from ENI, Royal Dutch Shell Plc and Talisman Energy Inc. will certainly play an important role in the development of shale gas facilities in Algeria. 

US

According to the estimates, the US holds the fourth-largest reserves of shale gas following China, Argentina and Algeria. It holds 665 trillion cubic feet of shale gas. As of now, the country is producing 87 billion cubic feet of shale gas per day. This product is expected to increase further. This increase in the extraction of shale gas has provided a boom to the US economy. It is estimated that the shale gas reserves are enough to sustain the energy needs of the US economy for the next 110 years.   

Canada 

Canada is one of the largest producers of natural gas in the world. It also holds the fifth-largest reserves of shale gas. It is estimated that the country holds 573 trillion cubic feet of shale gas reserves. There are significant explorations in Alberta, British Columbia and New Brunswick. However, due to inadequate local infrastructure and environmental protection laws, the country is unable to capitalize on this resource so far. Given the limited population and huge reserves of shale gas, the Canadian economy can continue to rely on this resource throughout the next century. 

Conclusion 

With the depleting natural resources and ever-increasing global energy demand, shale gas is the new ray of hope for the global economy. Apart from the list of countries, there are many other countries that hold large reserves of shale gas including Mexico, Australia and South Africa. Looking at the reserves, we can safely assume that this important resource can continue to meet the global energy needs for years to come. 

Black Holes – The Mystery of Outer Space

Artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc
This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc.  This media was created by the European Southern Observatory (ESO). Wikimedia CC.

Ever wonder what a black hole is? If I told you that you would be stretched like a rubber band if you came near it, would have I captured your interest?

From planets that orbit around the Sun to galaxies that are bounded by a special force (gravity), the universe is full of surprises and one such surprise is the black hole. These entities have such a high gravitational pull that not even light can escape, which is quite fascinating and mind-boggling in itself. 

The existence of black holes was first predicted by Albert Einstein, but the term wasn’t coined with that name until many years later. Initially considered a theoretical object, the first physical black hole was discovered in 1971, but the first-ever image of a black hole was released only this year, which has opened up a new area of study on these magnificent entities. Researchers and astronomers now know what a black hole looks like. But for us, it is important to understand what it is.

First-ever image of a black hole. 53 million light-years from here in the M87 galaxy. Scientists used the Event Horizon Telescope (EHT) which are scores of telescope arrays located in different parts of the world and synchronized to focus on the object on the same day and at the same time.

What Exactly is a Black Hole?

Before we begin, we need to identify two entities. One is matter. The other is gravity. We all know what gravity is, so let’s focus on matter, which is nothing more than an object that is made up of atoms. From the tiniest microorganisms to the largest stars, all objects are made up of matter.

The next factor to note is that all matter has gravity, which is proportional to its size, the larger the object is, the more gravity it will have (we are talking about objects that exist in space, not on Earth).

One example is our planet Earth, which weighs about 13,170,000,000,000,000,000,000,000 pounds (or 5,974,000,000,000,000,000,000,000 kilograms or 5.972 × 10^24 kg ). Yes, that’s a lot but when referring to the size of the universe, it is analogous to a grain of sand on a beach. Its weight (or the amount of matter it contains) is sufficient to have enough gravitational pull to hold the moon in its orbit and revolve around it.   

On a grander scale is our Sun, whose gravitational pull keeps the Earth and the other seven planets to revolve around it. If the Sun had no gravity, the Earth (and every other body in our solar system) would be endlessly floating through the universe. 

When stars die, they collapse within each other. When our Sun dies, which is expected to happen in about 4.5 billion years, it would collapse into itself, because gravity would be pulling all its mass towards its center. The remains would be a piece of matter about the size of Earth, called a white dwarf.

Since the Sun doesn’t have a sufficient amount of matter/gravity to collapse into itself any further, it will remain as a white dwarf. Another way of describing a white drawf is that its mass may be equal to that of the Sun, but its volume is comparable to that of Earth. This type of event is very common and consists of about 97% of the stars in our Milky Way galaxy.

 

But What About Larger Stars?

Just think of a star that is massive enough to have such a strong amount of gravity that all its matter gets pulled into the point that it is so much smaller than the Earth-size we mentioned before. As a general reference, let’s say about 18 miles in diameter.

In other words, it is packed so greatly that even though the result is a smaller object, it becomes more dense, because all that matter is condensed within a smaller volume. When this happens, it is called a supernova and results in what astronomers call a neutron star.

You Still Didn’t Explain How a Black Hole is Formed?

Those stars previously mentioned do not have sufficient mass to collapse to the point that they produce a black hole. Now, for stars that are that big, 

A black hole is an area in outer space with an exceptionally high gravitational pull. So far, we have predicted the force exerted by the black hole. But it is so strong that even light cannot escape if it goes close to a black hole. 

Scientists, however, have understood the reason for such a high gravitational pull. It is because matter has been crammed into a very tiny place. When very huge stars die, they form black holes that continue to absorb all the mass in the surrounding vicinity. Scientists also believe that at times, a single hole can merge with other nearby black holes. It is also hypothesized that the center of any galaxy in outer space is a huge black hole. 

Since light cannot escape, we cannot see black holes. They are invisible, but their presence can be felt. NASA has managed to develop special space telescopes that can help locate black holes. These special telescopes can also observe how stars close to black holes behave differently compared to other stars. 

Black holes can vary in size. A small black hole can be as small as a single atom, but it can have a mass equivalent to a mountain. So regardless of the size, what makes black holes unique is the mass of matter that is squeezed into them. 

Types of Black Holes

Astronomers and researchers have categorized black holes into four types.

Supermassive Black Holes 

Artist Conception of a Supermassive Black Hole
Artist Conception of a Supermassive Black Hole (Wikipedia)

The first type of black hole is also the largest. This type of black hole has an immeasurable amount of mass. Scientists believe that supermassive black holes are present at the center of galaxies in space. This type of black hole is also found in our solar system and is located at Sagittarius A*. 

Intermediate Mass Black Holes

So far, this is a hypothetical type of black hole. The mass in these black holes can range from 100 to 10 hundred thousand solar masses. There is no proof of the existence of this type of black hole. However, there is indirect evidence of the existence of such black holes due to the behavior of certain stars. 

Stellar Black Holes 

This type of black hole is formed when giant stars collapse. The mass of such black holes ranges from 5 to 100 solar masses. This can be observed as a hypernova explosion or a burst of gamma-ray. This type of black hole is also called collapsars. 

Mini Black Holes 

This is the last type of black hole. As the name suggests, they are small black holes with less than 5 solar masses. Mini black holes were introduced by Stephen Hawkings in 1971.

Major Black Holes Near Our Galaxy 

So far, researchers have spotted three major black holes near our galaxy. 

A0620-00

Scientists believe that A0620-00 is a stellar black hole, which is approximately three thousand lightyears away from the Earth. This system of a collapsing binary star belongs to the Monoceros constellation. It comprises an unidentified quantity of solar mass and a star. 

Cygnus X-1

Found in the constellation of Cygnus, this black hole was discovered in 1964. This is one of the few black holes which are widely accepted by scientists around the world. It is estimated that this black hole has 15 solar masses and is about 5 million years old. Scientists also believe that it comes from a star that was originally more than 40 solar masses. 

V404 Cygni

V404 Cygni is also categorized as a stellar black hole equivalent to 12 solar masses. It also has a star. The star and the black hole orbit within a close range. Because of the proximity of the star to the black hole and the intense gravitational pull, this star continues to lose mass to the black hole. 

Beyond Black Holes

There is nothing more mystifying in outer space than black holes. So far, we only know that as we get closer to the edge of the black hole, nothing returns. The gravitational pull is so high that it attracts even the tiniest particles of light. However, we also know that the force is different from suction. So just like something falls on the ground due to gravity, it moves into the black hole due to the same pull. 

It is believed that pressure and temperature inside the black holes can be so extreme that it does not support any form of organic life as we know it. Considering life forms that are not organic, we can definitely not comment on that now. No one knows for sure what lies inside the black holes. On one end, there is a galaxy, but what lies on the other side still remains a mystery.

Everything You Need to Know About Morganite

 

Photo of Morganite

The Morganite gemstone is something you might be hearing about a lot nowadays. It has fast become a trend and for the people that have seen one in person, it is easy for them to understand why that’s the case. The Morganite is an exquisite violet-pink to light pink gemstone that has been a favorite among gemstone lovers for a few decades. It is an affordable yet resilient gem.

Morganite belongs to a family of minerals called the beryl and is often also referred to as Pink Beryl, Cesian Beryl, and Pink Emerald. Morganite is one of the rarer variations of the beryl mineral and is considered second in rarity only to the red bixbite. The gemstone is a mesmerizing stone that has a pinkish and almost salmon-colored hue, which sets it apart from the rest. This characteristic color for Morganite is because of the presence of manganese within the gem. Most Morganite gems are treated with heat that enhances the pinkish salmon hue even more.   

Here is a look at everything that you need to know about Morganite.

Morganite Color

The color of Morganite varies within a range of pinkish colors. They can be found in colors ranging from pink, rose, and salmon to beach. The popularity of the Morganite gemstone in the market is because of the rose and pink tints that the stone has. While there is still a demand for salmon and peach hues, they are not as popular as their pinkish counterparts.

The gemstone is almost always put through treatment that enhances the pink color. The treatment isn’t something you can detect. Heat treatment effectively drives out the orange and yellow tinge that Morganite has, leaving a purer pink color. The resulting color is stable and does not fade.

Clarity

Much like other variations of the beryl mineral, Morganite usually is a very clear gem. It does not have a lot of visible inclusions. The lesser clear varieties of Morganite are often cut or carved out as cabochons.   

Cuts

The Morganite gemstone has a very distinct color tone. The stronger color tones in Morganite are rare. Even if there are strong hues in the mineral, it has to be cut out from a fairly large stone to get the finest color from it. The orientation of the rough has to be considered carefully because of the pleochroism of this gemstone. It can be cut into all the standard shapes and sizes including unique designer cuts – this is one of the reasons why it is a popular gemstone for jewelry.  

Origin of Morganite Gemstones

Morganite can be found in different parts of the world. The two most prominent producers of the Morganite are Madagascar and Brazil. There are also sources of the gemstone that can be found in Zimbabwe, Afghanistan, China, Mozambique, Russia, Namibia, China and even the United States.

Gemological Properties of Morganite

  • Chemical Formula: Al2(Be3[Si6O18])
  • Color: Pale Pink to Violet Pink, Salmon, Peach
  • Crystal Structure: Hexagonal
  • Hardness on Mohs Scale: 7.5 to 8
  • Cleavage: Indistinct
  • Fluorescence: Weak: Violet
  • Luster: Vitreous
  • Transparency: Transparent to opaque

Properties of Morganite Gemstone

For those who believe in the minerals’ emotional effects, Morganite is considered to be a stone that brings empathy, compassion, tolerance, self-control, and balance to the wearer. Through wearing the Morganite stone, a person can become capable of bringing stability to their life and control their emotions a lot better than before. The stone is also associated with easing the pain of people who have gone through separation from someone significant in their lives.

Morganite is a Heart Stone, which is also called the Stone of Divine Love. This stone brings love to the life of the wearer. The stone also has the potential to light the fire from an old flame and ignite the passion that one has in his or her love life.

One of the most wonderful things about the Morganite gemstone is that it is an aphrodisiac, which does not just allow the wearer to attract love but also to maintain it for the long term. It works by bringing in the caring and loving thoughts that help the two become more loving towards each other. It instills a greater feeling of well-being in both partners who wear the gemstone.

The beryl mineral is known to be a stone that physically heals people by relieving them of several conditions affecting the liver, glands, and eyes. Since Morganite is one of the variations of the Beryl mineral, it does not only have aphrodisiac properties, it also enhances the properties shown by other beryl gems. Morganite also helps to reorganize the cells, oxygenating them, and helps with breathing issues. It clears out lung blockages and asthma. It also has the power to cure emphysema.

Reasons Why You Can Use Morganite

Because there are so many properties that Morganite has, there are several uses that this stone can have for people. Some of these uses include:

  • Wearing it relaxes the mind and reduces stress in your life.
  • It challenges the wearer to become the best in everything that they do.
  • It enhances a person’s level of confidence and instills a calming and peaceful feel in them, allowing for better handling of tough situations.
  • It increases a sense of gratitude in the person wearing it.
  • Wearing Morganite also makes a person grow mentally, emotionally, and spiritually.
  • It increases the wearer’s wisdom.
  • It transforms a person’s bad experiences into challenges that they would want to take on and overcome.
  • It brings about a positive change in the wearer.

Ten Interesting Facts about Floods in the US

A bench partially submerged in flood water
Photo by gufoto – yayimages.com

To experience the devastations of floods, you don’t necessarily need to live in a high-risk flood zone. Regardless of where you live, floods can severely affect you. As the global climate is changing, there is a tremendous increase in the frequency of floods. Every year, floods are becoming more intense and causing more damage to life and property. 

The United States experiences floods very often. This is because the country is prone to many other natural disasters. Some interesting facts in the United States are highlighted below. 

Floods Can Occur Anywhere 

Where there is water, there can be floods. This natural disaster can occur anywhere, anytime. In the United States, flash floods can occur in all 50 states. They are triggered by a preceding event like a hurricane or a storm. 

The eastern part of the US often experiences hurricanes and severe thunderstorms. Both of these conditions can trigger flooding. On the other hand, the western part of the US is more prone to snow melts and heavy rainfall. 

Flash Floods May Develop Quickly 

Flash floods may develop is as little as six hours following the triggered event. In case of a dike or levee breakdown or the collapse of a dam, flash floods can occur within minutes. They may take slightly longer in case of excessive flow of river water through ice melts.

While heavy rainfall is one of the potential causes of floods, other natural disasters including hurricanes, storms, and snow melts can also lead to flooding. 

Floods Follow Tornadoes

In terms of loss of property and lives, floods are the second most destructive natural disasters in the United States. Tornadoes are the only natural disaster that has caused more damage in terms of life and property compared to floods.  

In the year 2011, the total damages from floods were $8.41 billion. As the intensity and frequency of floods has increased over the last few years, the damages also hiked.

Flooding is a “Top 5 Causes” of Weather-Related Deaths in the US

In the year 2014, flooding was the 4th leading cause of weather-related deaths in the US. The National Oceanic and Atmospheric Administration collected the data regarding fatalities due to natural disasters for the years 1984-2013. The data revealed that the average deaths related to flooding was 85 per annum. This was highest amongst other natural disasters including tornadoes, lightning strikes, and hurricanes.  

Floodplains Are Just 2% of the Earth’s Surface 

Floodplains are areas that have a higher risk of floods. They are low lying areas near the rivers and other water bodies. Naturally, only 2% of the Earth’s surface can be categorized as floodplains. The rest of the surface of land also gets affected by floods, but not as much as floodplains. 

Though floodplains experience extensive damage due to frequent floods, they play an important role in maintaining the ecosystem. Floodplains maintain the level of groundwater by absorbing flood water and releasing it gradually. They also provide clean water, wildlife habitat, and crops.  

Wetlands Save Costs

Flooding incurs a major repair cost as it extensively damages property and infrastructure. In the US, wetlands save more than $30 billion in damage repair. Since wetlands act as sponges, they absorb and store excess water. As a result, flood water does not remain standing. A single acre of wetland can absorb up to 330,000 gallons of water. This volume of water is enough to submerge thirteen homes. 

Apart from saving costs, wetlands play a crucial role in maintaining groundwater levels.  

Floods are Becoming More Frequent and More Intense 

Over the last few decades, the US has experienced major shifts in the weather. There has been a 20% increase in heavy rainfalls. Heavy rainfall has increased the frequency of floods. This, combined with the increased use of land, has intensified damages from the floods. The average annual loss from floods has increased from $6 billion in 2013 to $10 billion in 2017. 

Considering the global climate change, scientists have predicted that the weather will further worsen in the United States. The size of the floodplains in the US will increase by 40% in the next 50 years. This can have devastating consequences on future generations. 

Dikes or Levees Can Collapse 

Civilizations have been residing around rivers for centuries. When the technology was limited, people living near rivers built levees or dikes. This was their only defense against overflowing floodwater. As technology improved and dams were constructed, people continued to rely on levees. 

In the US, 100,000 miles of levees run across the nation. However, there is no record of the condition of these levees. An estimate of 40% of the population in the US lives in counties that still rely on levees. People now do not rely on levees for agricultural purposes alone; instead, homes and businesses are now constructed behind them. However, with the growing intensity of floods, levees are no longer a reliable option. 

Heavy rainfall induced by climate change, along with the deteriorating condition of the levees, can pose a threat to the population residing near rivers and streams. 

Tectonic Movements: How Earthquakes Happen

Earth cutaway schematic of the EarthFeeling the earth rumble under you has got to be one of the scariest moments you could experience. It may feel like the whole planet is moving and you are helpless to stop it or even run for safety. If you are one of those unlucky people who have experienced this, you are not alone, as thousands of others have also felt this unsettling thunder under their feet.

Fortunately, these movements, more commonly called – earthquakes, last less than a minute, but the damage they leave behind in both human lives and property is incomprehensible.

So you ask yourself – why did this happen? What can be done about it? Let’s delve into what causes earthquakes and see if we can remove the mystery of why the earth moves.

The Tectonic Plates

Map of earthquakes across the world
Fault lines across the world. Red indicates heavy plate movement and black depicts the most intensive earthquakes.
At a level that is just under the earth’s service, within an area called the lithosphere are platforms called tectonic plates. According to scientific studies, these plates move about 0.6 inches per year. The Rift Valley in Iceland is an example.

Slow-moving plates are of course nothing that we should really get excited about, but it is when there is a heavy movement of these plates that we should begin to worry.

The plates are broken up into 12 regions, like 12 pieces of a jigsaw puzzle that are connected to each other. When the plates move, they bump into each other at their connections, officially called boundaries, causing collisions, or conversely, breaking away from each other.

The image above is a historical account of previous earthquakes and depicts where these boundaries exist, which are called fault lines. The colors represent how intense the plate movements were; that is, how intense the earthquake was. It is also at these fault lines that when the plates move, volcanoes and tsunamis occur, and mountains can be created. As you can see, there is an abundance of fault lines across the entire west coast of the United States.

What lies directly under these plates is the source that causes the tectonic plates to move.

The Earth’s Mantle

Under the Earth graphic cut away
Under the plates is the mantle, which consists of magnesium and iron-bearing silicates. You can think of the tectonic plates as the ‘skin’ of the earth, analogous to the skin of an apple. So when there is movement in the mantle, the plates above it feel this movement and they will move accordingly. How much movement is dependent upon the intensity of the changes within the mantle.

How are the Plate Movements Quantified?

Earthquakes are caused by these collisions, as one plate moves over the other the earth shakes. The measurement of intensity is rated using a Richter Scale, which records the magnitude of the collisions, with ‘1’ being unnoticeable, up to ’10’, which can cause massive death and destruction. Fortunately, an earthquake of ’10’ is very rare.

What is the Current Theory of Plate Movement?

The reason why the plates move is still under conjecture, but one theory is that heat from radioactive processes within the planet’s interior is what causes the plates to move.

The latest theory is called slab pull, where areas of the lithosphere become less dense than the asthenosphere. This causes these areas above to sink further down into the mantle, pulling slabs of the lithosphere apart, and causing the plates to move in different directions. As a result, these regions are spreading or rifting,

Tetonic activity map over the Earth's history
Tectonic Activity Map Over the last One Million Years

The Latest Findings

As it turns out, such interactions between continental plates is not the only reason for these various geological processes. Research led by a joint team of the University of Toronto and the University of Aberdeen has achieved an enormous breakthrough!

According to the study that uses supercomputers to run a model of the Earth’s upper mantle and crust, prehistoric geological events could have left deep ‘scars’ that may play a significant role in earthquakes, tsunamis, formation of mountains or ocean trenches, and many other ongoing geological processes.

The models created by the researchers indicate that the previous plate boundaries could stay buried deep below the surface of the Earth. These structures, which are no less than many millions of years old, are located far from the current plate boundaries and may cause drastic changes in the surface properties and structure of the interior of the continents.

The researchers went a step further to propose a new map highlighting the ancient geology of the Earth. The ‘perennial plate tectonic map’ explains through illustrations how these prehistoric geological events could affect today’s geological processes. The map is based on the common tectonic map, which is taught in elementary school, but it has been modified to include the concealed, ancient plate boundaries that may be involved in plate tectonic activity in the past as well as the present.

Owing to this breakthrough, some major revisions are required to the fundamental idea of plate tectonics. The research paper titled, ‘Lasting mantle scars lead to perennial plate tectonics’ appeared in the Nature Communications issue of June 10, 2016.

Conclusion

So we see that plate movements below the Earth’s surface can cause these disturbances to occur, but how they occur is still a forum for debate. At least we know where it happens most (fault lines) and as best we can, precautions have been and will be taken for earthquakes to minimize damage.

The Fundamental Forces of Nature

Everything which happens around us is a result of the interaction of forces and we mean everything, from a fruit falling from a tree (remember Isaac Newton?) to Earth orbiting around the Sun, aa matter around us interacts with other bodies around it, This phenomenon is based on four fundamental forces

Gravity, the weakest of the four natural forces is present in our everyday lives. It determines how and why things around us stay at a certain height and why some objects fall down, while others take longer. 

Electromagnetic forces run our electric and digital machines and allow us to access the universe from the comfort of our homes. 

The other two natural forces, namely the strong and the weak nuclear forces, operate at the atomic level. They influence the fundamental particles of an atom including the proton and electrons. 

Each of the four fundamental forces of nature has unique properties and characteristics. Every single interaction which takes place in the universe can be explained through these forces. However, there are certain interactions that appear to be bizarre and are not explained by these four forces. This raises the question of the existence of a fifth, unknown and unexplained force of nature. Physicists are still struggling to find the answer.  

Gravity 

Photo of Woman Falling Down
Woman in Free Fall. Photo: Unsplash_011722_Bruce-Christianson-XyZxxJI8g30-unsplash1

If a pen slips out of your hand, it will immediately fall down and touch the ground. For humans, gravity appears to be the strongest and most obvious force of nature. In reality, gravity is actually the weakest of the four elements, at least on this planet. It’s a whole different animal in outer space. 

Simply defined, gravity is the attraction between any two objects which have a mass. The force depends upon the mass of the objects. According to the law of gravitation, the magnitude or intensity of the gravitational force can be calculated by multiplying the masses with the universal gravitational constant ‘G’. The resultant is then divided by the square of the distance between the centers of the masses. There is a different force of gravity constant for each object in the solar system and for that matter, the universe. The formula is F = G*m1*m2/r2 . One example would be the force of gravity on Earth is 9.8 meters per second squared or 9.8 m/s2

Gravity is very weak on the atomic level, but since most objects around us have so much mass, the force of gravity becomes stronger and more apparent. The force becomes stronger and more evident for universal objects with larger masses including the planets and stars. In this case, gravity is strong enough to keep them in an orbit. When it comes to galaxies, the mass further increases and gravity plays a crucial role in attracting galaxies even when they are far apart.  

The Weak Nuclear Force 

The weak nuclear force is much stronger than the gravitational force (1010 times). However, the force is only stronger within a certain range. It acts at a distance within the size of the proton. The particles which carry the weak nuclear force are called the weak vector bosons and have symbols w+, w-, and z0. The interaction between these particles causes one type of charged particle to turn into another type of charged particle. This interaction is responsible for phenomena such as beta and other radioactive decay

Electromagnetic Force 

Animated illustration of the electronmatic force's polority
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation. Photo: Wikimedia

The electromagnetic force, also known as magnetism is far stronger than the gravitational pull and has a much wider range than the weak nuclear force. It easily overrides gravity and it the third strongest force of nature is 1040 times stronger than the gravitational force.

An easy way to assess the strength of the electromagnetic force is to hold a magnet against a few paper clips. Gravity will attract the paper clips downwards but the electromagnetic force, which is stronger than gravity, will end up attracting the paper clips upwards. 

The electromagnetic force allows the interaction of particles with an electric charge. When the charged particles are at rest, they interact through electrostatic forces. When in motion, they mingle together through both electrical and magnetic forces. 

Though less powerful than the strong nuclear force, the electromagnetic force is by far the most prevalent force in the world. It can affect objects with a fair amount of power when they are at a reasonable distance. 

A military compass that was used during World War I
A military compass that was used during World War I

The Strong Nuclear Force

The strong nuclear force is the strongest fundamental force of nature. It is the biggest influence on the fundamental particles of the universe. It is this force that binds together the nuclei of the atom. However, the range of the strong nuclear force is only limited to subatomic particles. 

The nuclei of an atom are made up of a positively charged proton and a neutral charged neutron. Since like charges repel, each proton in the nuclei is working hard to get away from the other proton. This is where the strong nuclear force comes in. The strong force allows particles called gluons to stick together and create nucleons. These gluons can interact with other gluons and further strengthen the bond within the nuclei. The presence of a strong nuclear force is the reason why so much energy is released when the nuclei of an atom break down. 

The Fifth Force – Fact or Fiction 

Physicists around the world have unanimously agreed that the four fundamental forces explain every phenomenon (that we know of) in the universe. However, there are various mysteries of physics that cannot be explained by these four fundamental forces of nature.

One such mystery is the existence of dark matter. After immense research, physicists have agreed that dark matter is a form of a stable and huge particle that experiences gravity but no other known forces. Researchers have failed to identify the reason why dark matter does not experience any force other than gravity. 

There are many ideas about why other forces do not act on dark matter. One famous hypothesis is the presence of an unidentified fifth force. Physicists around the world are studying the possibilities of the existence of a fifth fundamental force of nature. But it is too early to claim its presence.  

How Mountains are Created

Mountains big and small have been the result of plate teconics.

The formation of the Himalayas was created when the Indian subplate burrowed under the European continent and formed the Appalachian Mountains.

When the North American and African plates collided, a large separation of earth materialized and the Atlantic Ocean opened up.

The volcanic and seismic activity of the West Coast of the US occurs as a result of grinding of the North American and Pacific plates.

The above are just a few examples of the effects of plate tectonics. The geological history of Earth is littered with such phenomena that have made the Earth what it is today.

Some of the Most Environmentally Dangerous Places on Earth

Kilauea Volcano with smoke plume rising
Kilauea Volcano, Hawaii © SS

You’ve heard the term: “It’s a nice place to visit but I wouldn’t want to live there”. Well, we going to explore places that appeal to some for a short visit but wouldn’t want to overrun their stay. 

The Kilauea Volcano on the Big Island of Hawaii is one of these places. A live volcano that spits out lava like a bottle pouring ketchup on a hamburger, but it doesn’t have a peak, instead it is rather flat; nevertheless, it is a live volcano.

Big Island Hawaii volcano area
Kilauea Volcano, Hawaii © SS

Just walk along the charred ground leading up to the lava plume and you will see what I am talking about.

A friend of ours traversed this chard ground, passing many warning signs of “danger to your health and possible death.” He walked for about a mile to the ocean to see the molten lava spewing down into the water from the rocks above. It was a sight to see and a place to visit, but you wouldn’t want to camp out there, not to mention live there.  

There are, however, locations on this planet that are a little more charitable, and surprisingly, some people do make the places their home. Maybe not as treacherous as the Kilauea Volcano, but tough and scary just the same, as they are sitting right in the middle of mother nature’s hidden fury. 

According to the World Health Organization, about 90,000 people are killed every year due to natural disasters. Globally, natural disasters affect almost 160 million people yearly. They have an immediate effect on lives and property, but in the long run, they can be detrimental to human survival. 

The places which are most prone to natural disasters are considered to be the most dangerous places on earth. Let’s take a look at where they are. 

I-44 Tornado Corridor 

Large tornado moving towards a house in a rural area
“crazy tornado” by rustybrick is licensed under CC BY-NC 2.0

Ranked as one of the most dangerous places to live, the I-44 tornado corridor is located between Oklahoma City and Tulsa. This geographical location has been hit by hundreds of tornadoes since 1950. The only period when there were no tornados was between the years 1992 and 1998. The following year has been known to be one of the most deadly years in the history of Oklahoma and Tulsa. 

In 1999, the area was hit by a series of 70 tornadoes that swept thousands of homes and killed hundreds of people in multiple cities. This series of tornadoes affected the areas of Kansas, Oklahoma, and Texas.  

The areas of Oklahoma City and Tulsa are densely populated and are a home for over a million people. The spring season is particularly damaging for this location as the cool and dry air from the mountains collide with the warm, hot and humid air of the coastal area. As a result, most tornadoes hit the region in the spring season making it very difficult for people to live. 

Guatemala

A rural area in central Guatemala showing houses and people
“Guatemala” by Green Empowerment is licensed under CC BY-NC-ND 2.0

A relatively poor country south of Mexico in Central America, Guatemala is constantly affected by natural disasters, including earthquakes, hurricanes, droughts, tsunamis, and volcanic eruptions. According to a survey, natural disasters between 1975 and 2015 have caused damage that has cost a total of $9.1 billion. 

A hurricane hit the country in 2005 caused severe damage. It also triggered landslides and floods. Multiple villages disappeared. With changes in the global environment, Guatemala is likely to experience an increase in temperatures and heatwaves, which can affect more lives.  

Indonesia

Fishermen boats in Cirebon, west Java, Indonesia
“Fishermen boats in Cirebon, West Java, Indonesia.”by USAID Digital Development is licensed under CC BY 2.0

Indonesia has managed to survive many natural disasters, including earthquakes, volcanic eruptions, and tsunamis. With a recorded history of natural disasters dating back to the 13th century, Indonesia has endured multiple disasters in the last three decades. 

The most famous being the deadly tsunami of 2004, which caused 227,898 deaths. Being started by an earthquake of magnitude 9.1, this tsunami affected many other Southeast Asian countries, including Malaysia, Thailand, Maldives, and Sri Lanka. 

Due to changes in the global climate, Indonesia has experienced one major natural disaster every year since the 2004 tsunami. 

Africa’s Killer Lakes 

Lake Kivu, Lake Nyos, and Lake Monoun, located in Congo and Cameroon are known as the “Killer Lakes of Africa”. These lakes have large volumes of methane and carbon dioxide stored underneath their surface. Eruption of these gases from the lakes has resulted in the creation of a gas cloud which has killed thousands of people in the region. According to research, the reason for this eruption is the volcanic activity taking place under the surface of these lakes. 

Lake Kivu, located between Congo and Rwanda is the home for over 2 million people. However, this is a very dangerous zone as Lake Kivu, holds 2.3 trillion cubic feet of methane gas. It also holds around 60 cubic miles of carbon dioxide gas. Both these gases have a greenhouse effect. However, the release of these gases can immediately kill the entire population in the region. 

Lake Nyos and Lake Monoun which also hold large reserves of these dangerous gases are located in Cameroon. People living around these lakes have experienced the eruptions of these harmful gases. The cloud of gas which formed after the release of CO2 and methane gas has killed thousands. Not only does it kills human beings, but it is also deadly for all creatures including plants and animals. 

The population living there is under immense threat as any volcanic eruption under the lakes can kill the entire population living in the region. 

The Cold Pole 

The toughest place for human survival is near the poles. The cold and dry climate not only hinders the growth of vegetation and animals but is also detrimental to human survival. The oldest city located in the heart of Siberia is known as the Cold Pole. The Cold Pole is known to be the coldest place that is inhibited by humans. The Russians have been living in this harsh climatic zone for more than three centuries. 

The river which flows in the region is frozen for nine months in a year and the city hardly sees sun during winters. During summers which range from September to March, the area gets sunlight for less than five hours per day. The temperatures during winters can go down to -60 degrees Fahrenheit, but this area of extreme climatic conditions is still home for 1,500 people.  

China 

The most populated country in the world has probably endured the most dangerous and deadly natural disasters in history. China is prone to many natural disasters, including earthquakes, floods, and typhoons. 

China is located in a region where the Indian and Eurasian tectonic plates are always colliding. This makes China one of the most dangerous countries in the world when it comes to natural disasters. Out of the 10 most deadly earthquakes on the planet, the top three were experienced by China. Not only earthquakes but China’s coastal region is regularly hit by typhoons and storms. 

Between 2000 and 2015, natural disasters in China have affected 1.6 billion people and resulted in damages worth $300 billion. 

Creeping Sandbox, China 

City in China
Photo by kit sanchez on Unsplash

If China doesn’t have enough to worry about, the once fertile oasis located in the Minqin Country in China is now an arid land. The people residing there are under an extremely tough situation as they are trapped between two deserts that are growing at a rapid rate. Human activities like deforestation have increased the rate of desertification and each year, the desert is growing by 10 meters. As a result, the land is becoming arid and barren and farmers living there are unable to meet their agricultural needs. 

Around two million people reside in this difficult climatic zone where there are 130 days of wind and sand storms each year. Due to extreme weather conditions and increased deforestation, the area of cultivable land has decreased from 360 sq. miles to 60 sq. miles. A number of farmers are relocating because of difficult living conditions. The government has also officially announced the relocation of displaced farmers in January this year.

Sahel Region of Africa 

Slightly change the definition of natural disasters, and you will notice that drought can also be disastrous to a region – a natural disaster in its own right. The dry and arid region of the Sahel region situated right next to the Sahara desert is prone to droughts. 

According to the UN Environmental Program, the drought in the Sahel region killed more than 100,000 people between 1972 and 1984. Over 750,000 people were dependent on food aid as they were unable to grow their crops due to extreme weather conditions and a shortage of water. Studies have shown that the exploitation of resources by humans has further increased the risk of drought in the future, making it one of the world’s most dangerous places. 

Lake Nyos, Cameroon 

As soon as you hear about a death toll of 1,700 people, the kind of natural disasters which may come to mind are earthquakes, volcanic eruption or a flood. No one can imagine that this high death toll can be the result of the release of carbon dioxide.

Lake Nyos is located in Cameroon with no signs of volcanic activity. However, this silent blue lake killed 1,700 people and thousands of animals due to an abrupt turnover of water. Studies have shown that the volcanic activity taking place underneath the surface releases carbon dioxide gas (CO2). This CO2 dissolved in the depths of the lake and the water became saturated with CO2. 

The water which is rich in CO2 does not mix or circulate, causing layers to form. These layers do not mix with each other. However, there is a periodic turnover of water which releases the trapped CO2 into the environment. 

This turnover which occurred in 1986 resulted in a sudden and disastrous release of CO2 into the atmosphere and killed many people. This periodic turnover continues to be a threat for people living near Lake Nyos in Cameroon.

Conclusion

There are many other places on earth that experience natural disasters of varying intensity, making them very dangerous places to live. With changes to the climate, the intensity and frequency of natural disasters have drastically changed. However, natural disasters are nothing but Mother Nature’s way of restoring balance to the earth.