Quantum Computing in Simple Terms!

Illustration of quantum light rays
Quantum computing. Close-up of optical CPU process light signal.  Photo: iStock

Quantum Introduction

The term ‘Quantum Computing’ hasn’t gotten the much-needed traction in the tech world as yet and those that have traversed through this subject might find it a bit confusing, to say the least.

Some experts believe that this is not just the future, but the future of humanity. Quantum theory moves ahead of the binary computer and ventures into the world of computing that resides at the subatomic level.

If you don’t have a clue what we are talking about, you are not alone. Stay with us through this article where we will discuss quantum computing in great detail—what it is—how it will change the tech world and its practical implications (both for better or worse).

Before we usher in the discussion of this potential life-changing advancement, it is necessary to discuss the platform on which quantum computing is based – Quantum theory. 

What is Quantum?

Illustration of the Atom
Particles of the atom: protons, electrons, and neutrons. Nucleus. Photo: iStock

Also known as quanta, in simple terms, it represents the minimum amount of energy that can be used within any physical interaction.

Using examples of particle interaction within the atom, a quantum of light would be a photon, and a quantum of electricity would be an electron. There can be no activity smaller than when these particles have an interaction.

In the Beginning

The industrial revolution of the 20th century was one of the greatest milestones of modern history. From the invention of the automobile to industrial steel, elevators, and aircraft, it gave birth to a plethora of things that now define our civilization and will continue to shape the history of our future. 

Enter the 21st century and we are watching a transition from the tangible to the intangible (virtual) world; notably, computer technology, its hardware, software, and the world wide web.

Among the many incredible things that are ensuing during this technological revolution is the colossal development in physics, specifically quantum theory. We will try to keep the explanation of quantum theory as simple as possible to make this as interesting and informative as possible. 

Modern Physics

The field of physics is divided into two definite branches: classical and modern. The former branch was established during the period of the Renaissance and continued to progress after that.

Classical physics is based on the ideas by Galileo and Newton. Their concepts are focused on the macroscopic (visible to the naked eye) of the world around us.

Conversely, modern physics is about analyzing matter and energy at microscopic levels. 

While we are at it, it is important to clarify that quantum theory doesn’t just refer to one idea or hypothesis. It is a set of several principles. We will discuss them simply and remain focused on the items that are relevant to quantum computing. 

    • The work of physicists Max Plank and Albert Einstein in the 20th century theorized that energy can exist in discrete units called ‘quanta’. This hypothesis contradicts the principle of classical physics which states that energy can only exist in a continuous wave spectrum.
    • In the following years, Louis de Broglie extended the theory by suggesting that at microscopic (atomic and subatomic) levels, there is not much difference between matter particles and energy and both of them can act as either particles or waves as per the given condition. 
    • Lastly, Heisenberg proposed the theory of uncertainty, which entails that the complementary values of a subatomic particle can’t be simultaneously measured to give accurate values. 

Neil Bohr’s Interpretation of Quantum Theory: The Primal Basis of Quantum Computing

Illustration of a quantum computer
Image by Pete Linforth from Pixabay

During the period when quantum theory was extensively discussed among top physicists, Neil Bohr came up with an important interpretation of this theory.

He suggested that light cannot be determined if it is composed of particles or waves, called wave-particle duality until they are particularly found out.

The infamous Schrodinger’s Cat experiment is an easy way to understand this concept. The experiment entails that a cat enclosed in a box with poison could be considered both dead and alive until the box is opened and the cat is observed.

Computer Algorithms 

Now, this is the point where the theory demonstrates its potential, but first, a definition of an algorithm – a set of instructions that a computer reads to carry out a function. E..G. You tell the computer to print a document. The computer will read the instructions (algorithm) and perform the printing function. 

To understand the quantum-based algorithm, it is essential to understand how contemporary/conventional computing systems work. 

Whether it’s a handheld gadget or a supercomputer working in the server room of Google, every current computing device employs the binary language, where every bit of information can exist in either one of two states: 0 or 1 (hence ‘binary’), but not both states at once. 

When we discuss quantum algorithms, they follow the idea that any particle-wave system can exist in multiple states at any given time.

This means when data is stored in a quantum system, it can be stored in more than two states. This makes quantum bits (also referred to as ‘qubits’) more powerful than the conventional method of binary computing.

Standard Binary Computing Vs. Quantum Computing 

Seamless pattern with abstract binary code, digital matrix background
4 rows of 8 bits = 4 rows of bytes. Photo: iStock

The fact that a quantum bit can exist in multiple states gives quantum computing an edge over conventional binary computing. With the help of a simple example, we will try to demonstrate how quantum theory is superior to its classical counterpart. 

Picture a cylindrical rod, and each end of the rod is a bit, labeled 1 or 0. When one side is a 1, then the other side must be a 0. 

On the other hand, the quantum bit exists in every possible state simultaneously, between the 1 and 0 together. 

The above explanation exhibits that quantum bits can hold an unprecedented amount of information and hence the computing governed by this type of algorithm can exceed the processing of any classical computing machine. 

A quantum computer can compute every instance between
0 and 1 simultaneously, called parallel computing.  

Quantum Entanglement

Apart from storing more information than classical computers, quantum computing can also implement the principle of entanglement. In simple words, this principle will enable every quantum bit to be processed separately.

Beneficial Uses of Quantum Computing

The processing capabilities of quantum computing make it an ideal machine to carry out many tasks where conventional computers fall short.

Science and Life Sciences 

The study of complex atomic and molecular structures and reactions is no easy task. A lot of computing capacity is required to simulate such processes.

For instance, the complete simulation of a molecule as simple as hydrogen is not possible with the available conventional computing technology. So, quantum computing can play a significant role in understanding many of the concealed facts of nature and more particularly, of life. Many chemicals and physical and biological research work previously stalled for years can take off after quantum computers become a reality. 

Artificial Intelligence and Machine Learning



Even though scientists have made significant inroads in the area of machine learning and AI with the existing computing resources, quantum computing can help take the giant leap to make a machine as intelligent as human cognition.

Machine learning feeds on big data, which is the processing of humongous databases; in other words, big data contains a colossal amount of information, above and beyond what conventional databases contain. And the more information you have, the more intelligent you become! 

With the fast processing of quantum computing, even conventional AI will become obsolete, revamping it into a new and more powerful artificial intelligence.

Improvement of General Optimization Procedures 

With the addition of big data, the processing that takes place involves more than just reading information. It also involves the ability to make more decisions.

It is called if/then conditions, meaning if something exists and something else acts on it, what could be the outcome? The conditions use variables to calculate each condition.

So, the more data, the more variables to calculate. Putting it another way, the number of permutations and combinations increases, and thus, the amount of processing power increases. When this happens, the amount of data to be processed can increase exponentially.

Some examples would be the optimization of a financial plan might need the processing of several petabytes, equivalent to about 500 billion pages of printed text. Implementation of such extensive computing can only be achieved with the processing power of quantum machines.

Other Side of the Coin: The Dangers Involved with Quantum Computing 

One should not be surprised by this heading. We have seen through the course of history how the advent of new technology, intended for the benefit of humankind, is followed by its misuse. 

One example is Einstein’s famous equation E = mc2, which gave scientists the idea of building an atomic bomb. Although Einstein was a man of peace and his theory was never indented to be used for destructive purposes, it became so anyway; hence, with quantum computing, this unrestrained processing power can be harnessed for nefarious purposes. 

Quantum Computing Puts Data Encryption Practices in a Great Peril 

Computer keyboard with credit cards and lock on top
Photo by Shopify Photos from Burst

And as we know every precious commodity is vulnerable to vandalism, breaches, and thefts. So, to address this vulnerability, computer scientists have developed encryption modules that are used to lock the data, and only those that have the encryption key can access it, with such a password. 

Unauthorized parties can’t get around this encryption without a technique called brute force cracking. But it is important to mention that brute force attacks might only work to crack simple passwords that consist of only a few bytes. 

Let’s try to better understand this with the help of numbers

With today’s computers, It could take more than a billion, billion years to crack data that is protected by what is called a 128-bit  encryption key, widely used by financial resources on the Internet.

A standard 128-bit key can’t get cracked by the brute force algorithm using the conventional binary coding system, but when we replace this two-state concept with a quantum bit of unlimited existing states, the tables surely get turned.

The result is that a 128-bit Key that is so formidable against the brute force of classical binary supercomputers will fall flat when quantum computing is used to carry out the brute-force algorithm.

No operating quantum machine exists today, but experts have estimated that a quantum supercomputer would be able to crack 128-bit encryption keys within 100 seconds. Compare that to the billon-billion years it would take a binary computer to crack the same code!

Aftermath 

If data encryption becomes ineffective, it will expose everything to criminal elements. To understand just a fraction of this devastation, imagine that every person on earth linked to the banking system loses access to their account. The mere idea of such a situation can send chills down your spine.

Apart from that, the neutralization of data encryption can lead to cyber warfare between nation-states. Here also, rogue elements will easily be able to capitalize on the situation.

A global outbreak of war in a world with the existing eight nuclear powers can end up with a dreadful outcome. All things considered, the manifestation of quantum computing can bring along many irretrievable repercussions. 

Preparation to Protect Against the Nefarious Use of Quantum Computing 

Google and IBM have successfully carried out quantum computing in a controlled environment. So, to think that quantum computers are a distant reality won’t be deemed an insightful judgment. For that matter, businesses should start preparing against this abuse. There is no point in waiting for formal rules and protocols to be issued. Experts working in the area of digital security and cryptography recommend some measures to protect business data in the future from any exploitation of the quantum era. 

Conclusion 

How technology has progressed in the last few decades is indicative of the fact that quantum computing is the reality of the future. So, the arrival of quantum computers is not the question of ‘if’ – it’s the question of ‘when’.

Quantum theory, with all its benefits for the development of life sciences, the financial sector, and AI poses a great threat to the existing encryption system, which is central for the protection of any type of confidential data. The proper approach for any nation and business is to accept this unwanted aspect of quantum mechanics as a technological hazard and start preparing against it with the help of experts. 

With that said, it will also be a blessing when used proactively for the benefit of humankind and we look forward to a better lifestyle for each of us when quantum computing becomes a reality.

Units of Power and How They are Related to Electricity

Before we learn about kilowatts and kilowatt-hours, let’s get a jump start (pun intended ????) on what these terms mean.

The Units of Electrical Power

Note: If you are not a physics enthusiast and want to skip the calculations, you can jump to this section.

Let’s travel into our way back machine and go back to high school physics 101. These terms and measurements are for background purposes only. We will not be using them later on, but understanding these concepts can help you better comprehend how power (energy) is referenced in units of watts (w) and how they are calculated. Let’s do it!

Speed

The rate of time at which an object is moving along a path.
Units: Length, Time
Example: The car traveled 1 mile in 60 seconds or 1 mile/minute.
Further Reading: What is speed in physics?

Velocity

The rate of time at which an object is moving along a path in a particular direction.
Units: Length, Time, Direction. More precisely, length/time (speed) in a particular direction.
Example: The car traveled 1 mile/minute going west.
Further Reading: What is the difference between speed and velocity?

Acceleration

When we speak about acceleration, it is the rate at which the velocity changes. In other words, velocity doesn’t stay constant.
Units: Feet per second per second or feet/second squared.
Example: A plane traveling south accelerates from 550 m/h (mph) to 600 m/h over a time period of 40 seconds. It has a change in velocity from 550 m/h to 600 m/h and the time period that this occurs in 40 seconds.
Further Reading: Speed, velocity, and acceleration.

Newton

Here we add a new component – Force. When we talk about the measurements of Newtons, we are talking about an acceleration (remember, acceleration means just a change in velocity) of an object.

Illustration_on_One_Newton
By Mhermsenwhite – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70624309

One newton is the force needed to accelerate one kilogram of mass at the rate of one meter per second squared in the direction of the applied force. Simply put, this is the amount of push (force) of one kilogram of an object that weighs one kilogram at a changing velocity (acceleration) of one meter per second per second.
Units: 1 kg⋅m/s2
Example: Joe is pushing a box weighing one kg down the road at 1 m/s

Joule

Joules refer to the amount of work done. A joule is equal to the work done by a force of one newton moving one meter, so Joe has pushed the box weighing one kg down the road at 1 m/s squared for a distance of 1 meter. A joule is also referred to as energy.

Say Watt?

The number of Joules that an electrical device (e.g a lightbulb) is burning per second. Joules and watts both refer to work and equate to power, but both are interchangeable.

Here is the connection:

1 Watt = 1 Joule per second (1W = 1 J/s), so a watt is the amount of energy (in Joules) that an electrical device (such as a light) is running per second. So if a device is burning 500 watts for 60 seconds, then a Joule would equate to 500 * 60 = 30,000 J. Moving ahead, if an air conditioner is burning 1000 watts for 1 hour (60 sec * 60 min = 3600 seconds), then that equates to 1000 watts * 3600 seconds = 3,600,000 Joules (of energy that was used for that hour).

A kilowatt is equal to 1000 watts, so 1 kWh represents the amount of energy transfer that occurs over one hour from a power output of 1000 watts (i.e., joules per second). Thus 1 kWh is equal to 3,600,000 joules of energy transfer (work).

What Does This Mean?

It means that the work of one newton is being performed in the form of electrons that are being pushed through the wire per meter. Saying it in a simpler form, one watt is one joule of energy running a device per second.

  Just Tell Me in Plain English What a Watt is!

Transparent Light Bulb
Consider this to be a one-watt light bulb. If it was a two-watt light bulb, it would be about twice as bright. If it was a 500-watt bulb, more power is needed to provide that additional wattage; hence, more power or we can say more current or voltage is needed, and up goes your electric bill! See how it works? Photo by LED Supermarket

Glad you asked. 1 watt is equal to voltage times current: W=EI  (don’t worry, you don’t have to memorize this formula). Also known as power, a watt is a unit of power.  The more the voltage and/or current that flows through the wire, the more power (watts) is used to run the device.

Let’s Talk About Time

Devices run for a period of time, right? So we have to add this value to our watt calculations. That way, we will know how many watts are used for a certain period of time, and as we will see later, this will help us determine what it costs to run electrical devices, or more specifically, what the electric company charges us and why.

Examples: Joe turned on a one-watt lightbulb for 60 seconds, so that is equal to 60 watts.

Now Joe turned on a 250-watt lightbulb for 2 minutes, so that is equal to (250 * 0.333 hours) = 83.25 watts.

(Remember, for you physics guys, 83.25 watts is the same as saying that 4995 joules of power have been generated).

We’ll be going into this in another article, but just to enlighten you, if your electric company charges you 14.34 cents per 1000 watts used per hour (that’s what they generally charge in New York), then, using the example above, you have paid the company 14.34 cents * (per 1000 watts) * 0.25 watts * 0.0333 / hour (2 minutes) = .036 cents per hour.

If Joe ran the 250-watt bulb for 1 hour, then he would be paying 3.6 cents per hour, but if Joe ran a 1000-watt device for 1 hour, he would be paying 14.34 cents.

OK, but if Joe ran the 1000 watt bulb for 10 hours, then he would owe the energy company $143 cents or $1.43.

OK forget about Joe. What if your electric company charges you 14.34 cents per hour for a 2000-watt air conditioner? You would be paying 29 cents per hour, so if you run the air conditioner for 10 hours each day, you would be paying $2.90 every day. That’s $29.00 every 10 days or close to $100 per month.

Say 1000 Watts!

Are you getting tired of hearing of thousands of watts? This author is also, so let’s call 1000 watts – 1 kilowatt. There you go. Kilo means 1000 so 1kw is 1000 watts.

If you run a 1000-watt device for 1 hour, then the designation is 1Kwh (1 kilowatt-hour or you can say a 1-kilowatt device is running for one hour), denoted as kWh. So, 1 kilowatt is equal to 1,000 watts. If a unit consumes 60 watts hourly and runs for 60 hours, then the energy consumption rate will be 60 watts x 60 hours to equal 3,600 watts per hour, which is equal to 3.6 kWh of electricity.

Ok we know, you want to know what it cost to run your electrical devices in your home and you probably want to know about your air conditioner for starters.  Let’s just say that a typical air conditioner runs about 3 kWh per day. To calculate how much that costs you, just call your local energy company to get the correct number. For our area, Nassau County, the cost is 7 cents per kWh. If you want to know more about your air conditioner costs, check it out here.

 

 

Gas Cars Vs. EV Cars Costs Comparisions 2023

White Tesla Model 3 Charging at Home
Austin, Texas, 2-1-2021: Tesla Model 3 charging at home in front of a house on an L2 charger. Photo: iStock

Note: If you want to bypass the calculations below and go directly to the actual costs of charging an EV against today’s gas prices, go to our Costs of Charging an EV in this article.

2023 Update

PSEG is now providing the monthly costs for home charging. Below is an example of a real Long Island homeowner’s EV statement from PSEG.

PSEG EV Monthly Cost email
Photo: SMS ©

 

Why Electric?

There are a number of benefits of driving an electric vehicle (EV). One is the cost savings on gas. The other is the environment. We will concentrate on the former now and will talk about the environment in a separate article.

Before we start discussing how EV costs are calculated, make sure you have read our articles on the atom, electric current and Units of Power and How They are Related to Electricity so that you will be able to keep up with our cost calculations that involve knowledge about watts and kilowatts, but if you haven’t, no worries. You can skip to the bottom to get our estimate of EV electrical costs when charging from the home, or just read the review below. 

Review

Here’s a brief overview for those who didn’t read the articles mentioned above.

    • Electrons are subatomic particles (one of the entities within an atom) that travel through the wire when power is applied (the wire is attached to an electrical socket). This is known as electrical current and is referred to in units of amps. More on this here.
    • Voltage is the force that pushes the electrons through the wireSimilar to turning on the pressure of a water faucet.
    • Current usually flows through a copper wire which is the conductor and the wire is covered by an insulator (rubber packaging around the wire so that the copper is not bear).
    • Resistance is the opposition to the current (electrons) that is flowing in an electrical circuit. Think of it as the friction that brushes along the side of the current.
    • A watt is the energy (power) that runs the electric device. It is a product of how much electrical current is running and how much voltage (push) is occurring. It is determined by multiplying the voltage times the current. The formula is E=IR (E=voltage, I=current, and R=resistance).
    • A kilowatt is 1000 watts (kW).
    • A kilowatt-hour (kWh) equates to 1kw that runs a device for 1 hour.

Example: If you run an air conditioner for one hour and that air conditioner uses 70 kilowatts of electricity per hour, then you have used 70 kilowatts of electrical energy for that hour. If you run the air conditioner for two hours, you would have used up 140 kilowatts of energy.

Most EVs, with the exception of the high-end luxury ones, have batteries that consist of a 60-65kWh capacity. Sparing you the formula, a battery of this size will equate to about 260 miles after a full (100%) charge.

Note: Most EVs are set to charge to 80% only. Constant charging to 100% diminishes the battery’s lifetime. 80% of a 65kWh battery equates to about 230 miles. 

How Do Kilowatts Relate to Electrical Costs?

Electrical Towers
High voltage transmission towers with red glowing wires against blue sky – Energy concept. iStock

Conventional Gas Cars

We will use a 2021, 4-cylinder Nissan Altima as our example.
Gas tank size: 16.2 gals and MPG: 31 average. 

If we multiply 31 miles/gals * 16.2 gals, we can determine the total mileage that this car can run on a full tank of gas, which is 502 miles.  

As of this writing, the price for a gallon of gas is $5.00 on average across the United States. So $5.00 * 16.2 gallons (a full tank) equals $81 to fill up.

Electrical Vehicles

Electric Vehicle being charged in a garage
Photo by Michael Fousert on Unsplash

For EVs, we calculate units per mile instead of MPG. For this example, we will use a 2020 Kia Niro EV, which is a fully electric vehicle and contains a 65kWh battery.

As mentioned, the industry standard for charging a 65kWh EV to 80% is about 230 miles.

Note: If you have an EV, never let it go below 30%, as you may run into trouble if you are on the road and can’t find a charging station, especially in the winter time.

Let’s review what we know so far:

    • Filling up a gas tank of a 2021 Nissan Altima will take you about 502 miles without having to fill up again.
    • The cost to fill up this car as of this writing is $81.00.
    • To charge a 2020 Kia Niro’s battery to 80%, the car can go about 230 miles without having to recharge.

Local Averages Using Electric Utility Calculations

Transparent Light Bulb
Photo by LED Supermarket, Pexels

We called PSEGLI directly to find out the average cost of electrical consumption for a typical home in Nassau County. Keeping it simple, an average home uses about $.33 per kWh (this includes delivery and service charges).

According to one source, 7.2 kWh is used each hour to charge the battery and if it takes approximately 4 hours to charge, the total kWh is 28.8 kWh.

28.8 kWh x $.33 = $9.5.

Rounded off, it costs about $10.00 to charge a 65kWh battery, which equates to 230 miles, but if you’d like to be a little more cautious if you think that might be too low (since there are so many variables involved that might not meet your particular driving habits or lifestyle, we can say the approximate cost for charging a 65kWh battery from a 220/240-volt level 2 charger is $15.00. How’s that?

Proportion 

We will now compare filling a gas tank of a conventional car which equates to the same mileage (230 miles).

Here are the steps: 

    • Divide the total mileage to charge the battery to 80% by the total mileage to fill a gas tank to get the percentage between the two: 

230 mi / 502 mi = 45% 

    • Multiply this percentage by the total cost to gas up a car: 

To get the cost for a conventional car to go 230 miles, we multiply the cost to fill up the gas tank ($81.00) by 45% to match the 230 miles, and that cost would be 0.45 *$85 = $38.7. 

Using an average of today’s gas prices ($5.00 as of today), it would cost a gas car $38.7 to go 230 miles of highway driving and an EV car would cost $15 to go the same distance (230 miles) in Nassau County, New York.

Note: As of October 2022, the price of gas fell to $3.5 / gallon, so proportioning this price, we get the cost to fill a gas tank to go 230 miles is – ($3.5 x 16.2) x 0.45 = $25.5, which is about 7 gallons of gas.

That’s still a savings of $15.5 for every 230 the gas car drives.

Cost of Charging an EV

Update: As of January 2023, PSEG and other utilities are now using disaggregation. A technique that breaks down energy utilization by appliance via AI computer algorithms. Below is an example of disaggregation of a common household’s individual energy usage by appliance.

Notice that $91 was spent on EV charging for the 30 days of November 11, 2022, to December 12, 2022. That’s $22.75 per week using standard electrical charges (not Time of Use as described below).

In comparison, one SUV that averages 25 MPG and traveled 1,100 miles for that same time period would have cost $149.60 at today’s price of $3.40 per gallon. Similarly, a typical mid-sized sedan traveling 1,100 miles would run $124.66.

You can calculate your specific mileage costs here.

PSEGLI Energy Breakdown by Applicance

Selective Electric Utility Plans Overview

Most electric utility companies provide more than one plan that you can select for your household. Besides the default plan which provides the same price for electric consumption 24×7, there is a plan that can allow you to select lower rates based on different times of the day.

This plan, called Time of Use (TOU) is available at PSEGLI and NYC’s Con Edison, as well as many other utility companies nationwide. Refer to their brochure as to exactly how this works.

If you have not already done so, change your plan to TOU and schedule your EV charging for after midnight on weekdays.

You can also apply the same schedule for your dishwasher, washer and dryer and any other appliance that uses electricity.

PSEGLI TOU Chart
PSEGLI TOU Chart

Take a look at the electric bill above from PSEG of Long Island (PSEGLI) above, which powers Nassau County and where the offices of Howard Fensterman are located.

Electrical power companies charge per kWh and we did some preliminary calculations starting with the delivery charges in the bill, and that doesn’t include the actual electrical costs after that.

Note: It can take up to four hours to charge an EV using a level 2 charger.

Gas hose on a money background

 

 

 

 

 

 

PSEGLI EV home charging graph
Image capture: PSEGLI

 

Conclusion

If you are looking to save money on gas, EV cars are the way to go. Yes, these vehicles are more expensive than conventional gas cars, but at $3,50 per gallon, you will be pleasantly surprised how much your savings can accumulate.

Finally, we leave you with this. Below is a copy of the estimated charges that accrued for the month of July 2022, from a 1,100-square-foot home that has an EV in its garage in Nassau County, NY. The family charges the car to its 80% capacity about three-four times per month. Notice that the cost in the Electronics category is only 10% of the total usage in the house. Something to think about!

Copy of estimated charges from PSEGLI for a home in Nassau County
Photo: SS

 

 

What is Voltage and Electrical Current? (A Brief Guide)

Electrical Towers
High voltage transmission towers with red glowing wires against blue sky – Energy concept. IStock.

Electrical current is the measure of electrical flow. It’s measured in amperes, or amps for short. The current refers to the number of electrons that pass by a point in an electrical conductor in one second, and it’s usually given in units as milliamps (mA) or microamps (μA). This article explains what electrical current is and how it works. Keep reading to learn more about this topic!

How Does Electrical Current Work?

Electrical current travels through a wire (conductor) to reach a device (eg. light bulb) which causes the device to enable. This traveling of electrons through the wire to the device is called a circuit. It is the pathway for an electrical current to flow from the source to the load. 

Wires showing copper cables
Copper cables are surrounded by rubber insulation. The copper wire is the pathway from the source to the load.  iStock

 

 

 

 

 

 

There are three basic parts to a circuit:

    • The “source,” or “sourcing device,” is where the electrons come from. This can be a battery, a generator, or the flow of electricity from a wall outlet. 
    • The “load,” or “dumping device,” is where the electrons go after completing the circuit. This could be a light bulb, an appliance, or some other device. 
    • The “pathway,” or “wiring,” is the middle part that brings the electrons from the sourcing device to the dumping device. The wiring is almost always made of copper, iron, or in electronic devices, a semiconductor. The current can only flow when the circuit is complete. When the circuit is broken, the current stops.

What Is Electrical Conductivity?

Electrical conductivity is the ability of a material to allow an electrical current to flow through it. The term conductivity is used to describe the extent to which a material will allow the flow of an electrical current. If a material has high conductivity, such as copper, it means that it is very good for allowing electrons to flow rather freely through the wire, while low conductivity, such as rubber will inhibit the electron flow to a greater extent, known as resistance.

The harder it is for the electrons to flow, the more resistance the material has. That’s why the rubber is used to insulate the copper wire in almost all manufacturing that will transmit electric current. Rubber has a high resistance rating. 

Wood and glass are two types of materials that have very low conductivity ratings. Have you ever used wood to connect to an electrical circuit or battery? On the other end, copper is one of the most conductive materials around and that is why you see so many wires and/or cables that have copper wiring.

Besides the type of material that is used, electrical conductivity can be affected by several factors. For example, temperature, and the presence of contaminants like dust and water.

What is Voltage?

Turn on your water faucet about a quarter of the way and place a cup under it. Notice how fast (or slow) the water is running to fill the cup. How long did it take?

Now turn the faucet to make the water run faster. When you do this, the water fills up the cup sooner. 

This is your voltage (actually an equivalent of voltage). The faster the water comes out, the more the force or pressure of water will be used. In electricity, this means that the more the pressure, the faster the electric current will come out to power an electrical device. The bulb will light up quicker, which you won’t notice, since it happens so quickly, but that is what will happen.

Ohm’s Law

A law that states the relationship between voltage, current, and resistance in a conductor (or insulator). It states that voltage is equal to current times resistance or E=IR. So the voltage equates to the amount of current that flows through the wire but includes the amount of resistance the current is subjected to. 

Types of Electrical Current

There are two basic types of electrical current: Direct Current (DC) and Alternating Current (AC). A direct current is a constant flow of electrons that always flows in the same direction. It can flow in one direction or it can flow in both directions. It is provided by batteries, solar cells, and hydroelectric plants. Electrical current can be changed from DC to AC by using a device called a transformer. Transformers are used to change the voltage of the electricity.

Summary

Electrical current is the flow of electrons through a conductor. A complete circuit is where electrons flow from the source to the load through a pathway or wiring. Electrical current works when a circuit is complete. A circuit is a pathway for an electrical current to flow from the source to the load. There are 3 basic parts in a circuit. The source is where the electrons come from. The load is where the electrons go after completing the circuit. The pathway is the middle part that brings the electrons from the sourcing device to the dumping device.

There are two basic types of electrical current: Direct Current (DC) and Alternating Current (AC). A direct current is a constant flow of electrons that always flows in the same direction. AC can change from DC to AC by using a device called a transformer.